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Background: Geography

• The Permian Basin covers a 
huge area in western Texas 
and southeastern New 
Mexico

• 52 counties
• 75,000 square miles 

- (48 million acres)
• The Permian Basin is split into 

2 main sub-basins
• Midland Basin
• Delaware Basin

Fig. 1. Map of Permian Basin Structural Setting.  Murchison Oil and Gas. 2010.  Web. 9 Oct 2015. 
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Background: Oil and Gas Industry

• 23 prospective formations 
with up to 25,000 ft of 
multiple, stacked, 
petroleum systems

• Extensive drilling, coring 
and geological studies since 
1920s

• >1,000 operators

• >500k wells

• Cumulative production
• >29 BBO
• >75 Tcf of gas

Fig. 3. Map of Sub-Basins in the Permian. Shale Experts. 2015.
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Problem and Challenges

• Operator reported producing formation not specific enough
• Analyzing individual well log data time-intensive to capture
• Visualizing production data on 2D map does not offer perspective of stacked play
• Integrating large volumes of data

Fig. 5. Integrated 3D model displaying data from different disciplines including well deviation surveys, a seismic cross section and 3D volume, and production information displayed in the pie charts. Dynamic Graphics. 2015.
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Goals and Objectives
• Develop workflow to improve 

efficiency of regional basin 
analysis

• Interpolate well log data to sub-
delineate formations into 
contiguous producing horizons

• Specify completion and 
production from productive 
horizons

• Create surfaces for petrophysical 
parameters

• Interpolate well log metrics from 
control locations to wells that 
have not been interpreted

Fig. 6. Map showing stacked formations. Midland Basin: Multi-stacked Horizontal Targets. Oil & Gas Journal. 2015. 
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Methodology: Mapping Formations & Well Log Attributes
• Obtain text file of geologist’s interpreted data

• Unique identifier (API)
• Coordinates
• Horizon name
• Total vertical depth subsea (TVDSS)
• Metrics from raw well log data

• Gamma ray (API units) 
• measures the radioactivity of rocks to determine the 

amount of shale in a formation
• Resistivity (ohm•m) 

• measures electrical resistivity for formation 
evaluation

• Neutron porosity (porosity units) 
• measures the hydrogen content in a formation

• Bulk density (g/cm3) 
• used in conjunction with neutron density to 

determine porosity and identify hydrocarbons

Fig. 7. Interpreted well log. Matt Boyce, PhD. 2013.  
Southwestern Energy. 
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Methodology: Exploratory Spatial Data Analysis
• Get to know your data

Data

Indicators of a normal distribution
• Bell-shaped curve
• Mean & median close to the same value
• Skewness close to 0
• Kurtosis close to 3

I’m 
perfectly 
normal!

.

Mean: 8572
Median: 8880
Skewness: -0.63
Kurtosis: 3.27

HistogramNormal QQ Plot
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Methodology: Interpolation Methods
.

• Probabilistic Methods
• Use a statistical approach to 

quantify the uncertainty 
associated with the prediction

• Deterministic Methods
• Use defined algorithms that take into 

account the distance between a 
known location and a queried location

Advantages Disadvantages

Computationally fast Does not account for spatial 
relationship of data

Easy to run Produces boundary bias

Available in most 
software packages Creates bull’s eye effect

Advantages Disadvantages
Accounts for spatial 
relationship of data

Slower to run than
deterministic methods

Produces more accurate 
results than

deterministic methods

Parameters less intuitive
than deterministic 

methods

Best linear unbiased 
prediction (BLUP)

Must investigate dataset
before modelling

• Natural 
neighbors

• Inverse distance 
weighting (IDW)

• Spline
• Trend

• Kriging 
• Simple
• Ordinary
• Universal
• Empirical Bayesian kriging
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Methodology: Kriging – Background

Other Contributors
• Mercer and Hall (1911)
• Youden and Mehlich (1937)
• Kolmogorov (1941)
• Lev Gandin (1959)
• Matérn (1960)

Fig. 7. Danie Gerhardus Krige (1939). Royal 
Society of South Africa. 2013.  

Danie Gerhardus Krige

Fig. 8. Georges Matheron
(1939). MINES ParisTech -
Centre de Géosciences.

Georges Matheron

Kriging
• Kriging uses a Gaussian statistical model to optimize spatial prediction
• Used in meteorology, mining, forestry, hydrology, soil sciences, geology, 

public health, petroleum engineering
Origins
• Danie Gerhardus Krige – South African 

Mining Engineer (1951)
• Georges Matheron – French 

mathematician and geologist, formalized 
Krige’s work and founded mathematical 
morphology
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Methodology: Kriging – Benefits and Limitations
Benefits
• Accounts for distance and direction of 

the data
• Optimal predictor
• Best unbiased linear predictor (BLUP)
• Generally have smaller error than 

other interpolation models
• Ability to filter out measurement errors
• Uses a semivariogram to quantify 

spatial dependence in the data
• Ability to generate prediction, quantile, 

and standard error maps
• Includes cross-validation

Direction

Limitations
• Assumes the semivariogram is always 

correct when applying function to the data
• If data does not have a normal distribution 

the error associated with the prediction is 
underestimated
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Methodology: Empirical Bayesian Kriging (EBK)

• Accounts for uncertainty introduced in the semivariogram
• Uses “intrinsic random functions” that inherently correct for trends in the data
• Able to remove local trend in dataset
• Can be used to interpolate non-stationary data for large areas
• Generally more accurate than other kriging for small datasets

• Many methods to model the 
semivariogram

• Power, linear, exponential, 
thin plate spline, whittle, 
and K-Bessel

• Different models impact the 
model’s flexibility, accuracy, 
and calculation time

Fig. 9. Output surfaces from geostatistical analyst.  Esri Japan, 2016.
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Methodology: EBK – Parameters & Glorious Semivariograms

• Unique distribution of 
semivariograms for each 
point in dataset

• Median distribution 
indicated with dark red line

• Percentiles shown with 
dashed red lines
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Methodology: EBK – Cross Validation

Prediction errors for dataset should have:
• Mean Standardized Error near 0
• Root-Mean-Square Stnd Error near 1
• Average Standard Error as small as 

possible

* RMS near 1 is key to a stable model

• View error associated with each predicted point
• Optimize results to obtain most precise grid
• “Cross-linking” enabled Prediction Errors for Entire Dataset
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Results: EBK – Contiguous Prediction & Standard Error Maps

Prediction Map Control Points Prediction Standard Error Map

AOI covers 21,075,775 acres
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Results – Well Horizon Classification

State Data – Formation 1 Internal Sub-delineation – Formation 1aInternal Sub-delineation – Formation 1bInternal Sub-delineation – Formation 1cInternal Sub-delineation – Formation 1d Internal Horizons – Formation 1a-d
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Results – Well Log Attribute Classification
• Interpolated grids for well log attributes for each formation
• Extracted petrophysical well log attributes from grids and applied to all wells in the horizon

Well control points with 
interpreted petrophysical 

property are shown 
symbolized from a low-to-

high value

Grids are created from 
control points for 

petrophysical parameter 
using EBK

Wells producing from the 
same horizon that have 
not been evaluated are 

shown in grey

Extract value from EBK grid to 
State’s well dataset; the values 

for each of the petrophysical 
properties was extracted to the 

well bore
Shallow Deep
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• EBK interpolated grids for each horizon (SSTVD)

Fig. 9. Screenshot of geologic horizon shown in 2D view in ArcMap (left) and in 3D view in Transform software (right).  Horizon generated using EBK process in GIS.  Transform 
screenshot provided by Cullen Hogan, January 6, 2016.

Results – 2D and 3D Grids
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• Convert Esri GA Layers to 
raster grid format for use 
in other software

• Provide geophysicist grids 
for use in 3D model

• Integrate data

• Visualize and classify 
producing horizons

Fig. 10. Screenshot of structural model in JewelSuite software displaying wells intersecting target formations.  Screenshot 
provided by Cullen Hogan, February 4, 2016.

Results – Well Landing Zone Classifications
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Shallow Deep

Summary
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Questions?

Thank you!
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