
Pamela Kanu, GISP
Fugro Marine GeoServices Inc.
pkanu@fugro.com

April 13, 2017
Outline

• Determine GIS Project Coordinate Reference System (CRS) Information

• Manipulating and Converting CRS in ArcMap

• Distributing Geographic Information

• Summary
Overview

Potential for geodetic integrity issues at all stages
Agenda

- Determine GIS Project Coordinate Reference System (CRS) Information
- Manipulating and Converting CRS in ArcMap
- Distributing Geographic Information
- Summary
GIS CRS Lifecycle

• Mandatory Coordinate Reference System (CRS) definition at beginning of the project

• Ensure CRS validation for all subsurface applications

• Geomatics experts contacted at project start-up

Users should not make assumptions regarding CRS!

Source: depositphotos (2017)
IOGP’s EPSG CRS Area Polygons

- Determine coordinate system for Area of Interest
- Register at www.epsg.org
- Download shapefile and load into ArcMap
- Add from ArcGIS Online

3900+ Validated EPSG CRS polygons available online
EPSG Geodetic Parameter Registry

- Structured dataset of Coordinate Reference Systems and Coordinate Transformations
- Options to “query by filter” or “retrieve by code”

Source: IOGP www.epsg-registry.org
EPSG Geodetic Parameter Registry (cont.)

EPSG Geodetic Parameter Registry

Source: IOGP www.epsg-registry.org

ProjectedCRS [NAD27 / BLM 15N (fUS)]

- **Code:** EPSG:32065
- **Name:** NAD27 / BLM 15N (fUS)
- **Type:** ProjectedCRS
- **Status:** Valid

Area Description:
United States (USA) - between 96°W and 90°W - Arkansas; Illinois; Iowa; Kansas; Louisiana; Michigan; Minnesota; Mississippi; Missouri; Nebraska; Oklahoma; Tennessee; Texas; Wisconsin; Gulf of Mexico o.

Bounding Box Boundary
- South Bound Latitude: 25.01
- West Bound Longitude: -96.01
- North Bound Latitude: 49.38
- East Bound Longitude: -99.86

Note (Reference CRS): WGS 84 geographical 2D CRS

Polygon (Revision Date): 2013-11-05

Base Geodetic CRS [NAD27]:

Conversion [BLM zone 15N (US survey feet)]:

Cartesian CS [Cartesian 2D CS. Axes: easting, northing (X,Y). Orientations: east, north. UoM: fUS]:

Source: IOGP www.epsg-registry.org
Recommendations for CRS Selection

• Select an appropriate 2D geographic CRS ("datum") which is in common use and has an accepted and well defined transformation to WGS 84

• Use an appropriate map projection with small distortions and minimal error*

• Consider existing legacy data

• Consider export of produced data / maps (i.e., regulatory reporting requirements)

Objective is to minimize geodetic risk

Obvious choice is not always "the best"
Agenda

• Determine GIS Project Coordinate Reference System (CRS) Information

• Manipulating and Converting CRS in ArcMap

• Distributing Geographic Information

• Summary
A transformation is required when changing coordinates from one CRS to another CRS (i.e., NAD27 to WGS 84)
IOGP’s EPSG Coordinate Transformation Area Polygons

- Useful transformation information
- Depend on Transformation Method and Area of Use
Transformations in ArcMap - Tidbits

- Transformations are bi-directional

- If no transformation is used, a default transformation is used. The default is the first chosen in the list and may not be applicable for the area and or suitable for applications that require precise locational accuracy

- If you have custom transformations they will be assigned as the default transformation
Transformations in ArcMap – Tidbits

• **Preserve Shape** – Adds vertices to the output for more accurate.

• **Vertical** – Unchecked = Z values are ignored; Checked = Project tool transforms X, Y, and Z values of geometric coordinates **Must have Z Values, requires ArcGIS Coordinate System Data installation package, not compatible with the Preserve Shape parameter**

• **Maximum Offset Deviation** - determines the extent of deviation from its exact projected location, default is 100x the XY tolerance of the spatial reference output
Project on the Fly

- ArcMap has the ability to transform and project “on the fly”

- Can display data in one CRS as if it were in another, without altering the actual data

Multiple transformations can be used in the data frame, but only 1 per CRS
Project on the Fly

NOTE:

• ArcMap data frames only support one transformation for each geographic coordinate system of the layer to the data frame geographic coordinate system.

• Multiple transformations are used in the event that no Transformation exists.

Project on the Fly

Geographic Coordinate Systems Warning

The following data sources use a geographic coordinate system that is different from the one used by the data frame you are adding the data into:

<table>
<thead>
<tr>
<th>Data Source</th>
<th>Geographic Coordinate System</th>
</tr>
</thead>
<tbody>
<tr>
<td>well</td>
<td>GCS_Geographic Coordinate System</td>
</tr>
</tbody>
</table>

Alignment and accuracy problems may arise unless there is a correct transformation between geographic coordinate systems.

You can use this button to specify or modify the transformation(s) used by this data frame:

Transformations...

The Transformations dialog can also be accessed from the Data Frame Properties dialog’s Coordinate Systems tab after you have added the data.

- Don’t warn me again in this session
- Don’t warn me again ever

In the event that you check this box

RUN THE ADVANCED ARCMAP SETTINGS UTILITY
<install path>:\Program Files\ArcGIS\Desktop10.4\Utilities
PROJECTING WHILE PROJECTING ON THE FLY

• BUG NO. 000096495
• The Project Raster Tool won’t project a custom transformation in ArcGIS 10.4, but is successfully in earlier versions.

• You can project while projecting on the fly
 1. Set Transformation
 2. Export Data
 3. Choose the Data Frame

BE AWARE WHILE PROJECTING ON THE FLY
Although it is possible to edit data that is in a different coordinate system from the data frame, when **high levels of accuracy** are critical, it is better to project the data to a common coordinate system before editing.

If you attempt to edit on the fly you will be prompted with 2 options:

BE AWARE OF EDITING WHILE PROJECTING ON THE FLY

- Continue with your edit session and start editing features in projected space.
- Choose not to continue editing if you want to change the coordinate system used by the data frame to match the native coordinate system of the layer or layers you want to edit.

Your edits will be projected “according to the on the fly transformation” and pushed back to it’s native projection. Be aware of:

- Editing beyond the edge of the coordinate system
- Changing the shapes of features, snapping to the edge or boundary of features, or extending and trimming features
- Transformations in the MXD only hold 1 per datum.
- Differences in tolerances
Custom Transformations

- Users have the ability to create custom transformations

Consult your local geodetic expert!
Custom Transformations

- Careful when transforming in web applications!

- Developers with little or no spatial/GIS knowledge fail to understand datums, coordinate systems, projections

- Web applications use the projection “Web Mercator, EPSG 3857” - this projection should be used for visualization purposes.

- Solutions depends on the application, you can edit the projection parameters, create custom vector basemaps, or reproject a basemap.
Difference between UTM and BLM

- UTM are not defined as Feet
- The Bureau of Land Management (BLM) developed five unique North American Datum 1927 (NAD 27)-based Outer Continental Shelf (OCS) cadastres when the offshore program was administered by that Agency.

Agenda

• Determine GIS Project Coordinate Reference System (CRS) Information

• Manipulating and Converting CRS in ArcMap

• Distributing Geographic Information

• Summary
Web Maps

- Popular medium for displaying spatial information online
- Uses an internet browser
- Uses Web Mercator projection unless a basemap is defined or projected

Questions:
1) Do you know what coordinate reference system is being used by the application?

2) Do you know the coordinate reference system of your input dataset?

3) Do you know what transformation is being used between the application and the input datum?
Web Maps

Create a vector tile layers (Vector Basemap)

- Application developed with JavaScript

Other APIs are discouraged because they may not natively support the editing of ArcGIS Server feature services; you would have to do a fair amount of programming in order to edit the services.

- ArcGIS Viewer for Silverlight
- ArcGIS Viewer for Flex
- ArcGIS API for Flex & ArcGIS API for Silverlight have been retired
- ArcGIS API for JavaScript
Additional Applications

- ArcGIS Explorer, ArcScene, ArcGIS Pro, ArcGIS Earth, Google Earth, Unity, IHS Kingdom, Global Mapper
- All input and display of GIS data

It is up to the application distributor to research and choose the correct application suitable for your project and application use.

Coordinate systems and transformation methods will vary.
Map Products

• All maps should have the coordinate reference system as the minimum; Name and EPSG code

• EPSG code is standard for oil and gas industry

• Example
 – EPSG Name: NAD27 / BLM 15N (ft US)
 – EPSG Code: 32065

• Look up codes in EPSG Geodetic Parameter Registry
 – http://www.epsg registry.org/
Summary – Do’s and Don’t

- **DON’T** make assumptions regarding coordinate reference systems
- **DON’T** assume the software sorts out your geodetic problems
- **DON’T** assume the software predicts the correct CRS

- **DO** make use of IOGP EPSG polygons and EPSG geodetic parameter registry
- **DO** seek advice from geodetic experts when in doubt
Summary

• Determine GIS project coordinate reference system information by using ESPG’s registry and area of use polygons

• Manipulating and converting CRS in ArcMap by transformation methods

• Address coordinate systems in web applications and map products before distribution
Questions?
More than **500** experts in Geomatics, Geodetics, Surveying, Positioning and Navigation, Geospatial Data, and Mapping Sciences

www.apsg.info

Apply online to join for professional development, technical education, business networking, and fellowship