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Abstract 

Models estimating the distribution of soil properties were developed from soil profile descriptions and GIS 
landscape analysis to assist soil scientists with soil-landscape information prior to the completion of field soil 
investigations. Soil profiles and landscape features were described at 97 randomly located field sites within a 
30,424 ha project area in the Mojave Desert. Explanatory variable information was also developed for each of 
these sites through GIS extraction from digital elevation model data, landform derivatives, band-ratio satellite 
images, and geomorphologic data. The models estimated selected soil characteristics continuously in a 30 m 
raster over the project area. The response variables that we modeled were soil genetic features that are used 
as diagnostic properties in Soil Taxonomy (e.g., presence or absence of argillic horizon).  

1. Introduction 
 
In the western United States the spatial and attribute resolution of digital soil-forming factor data is still quite 
coarse. The explicit relationships between these explanatory variables and the resulting individual soil 
properties is not well understood in most areas. Despite several decades of worldwide research and 
development of GIS soil modeling methods, the outputs from these models is rudimentary information.  
 
The spatial resolution of input data is in the order of 10-30 m, while soil variation occurs at a scale as fine as 
0.5 m. In addition, some of these data have been converted to raster format from large polygons, e.g., 
geology, which may to lead to an incorrect assessment of resolution. Attribute resolution is also out of sync, 
e.g., geologic attributes describe entire formations rather than individual rock types. It is beyond the resolution 
of the input soil-forming factor data and our explicit understanding of soil-forming relationships to attempt to 
create detailed, taxonomic (or even multi-property) soil maps directly from explanatory variable data. At this 
stage, we feel the appropriate goal for GIS soil-landscape modeling should be to produce maps showing 
estimates of important individual soil genetic features in order to increase understanding of soil-landscape 
relationships and to guide field data collection by soil scientists working on soil survey projects. 
 
In this project we have attempted to develop models to estimate the spatial distribution of individual soil 
genetic features. These features are defined by objective criteria in Soil Taxonomy (Soil Survey Staff, 1999). 
These genetic features are commonly used to classify soil pedons using a soil taxonomic system. These 
genetic features also serve as markers in the stages of development, or genesis, of soils. We have made no 
attempt to model these genetic features as they would be combined in a taxonomic system. We feel that 
these individual genetic features are important measurable soil properties that influence soil use and 
management. Also, the relationships between each individual genetic feature and the soil-forming factors will 
be more direct than developing one relationship to model all of the soil properties together. Our models allow 
each feature to vary independently and continuously (at separate scales of variation) across the landscape as 
described by McKenzie, et al. (2000). 
 
Soil survey depends on developing relationships between the soil-forming environment and the resulting soil 
properties. Dokuchaiev (Glinka, 1927), Hilgard (1914) and Jenny (1941) spoke of relationships between the 
soil-forming factors and soil properties. It is our interpretation that they were speaking specifically of soil 
properties rather than taxonomic classes based on combinations of soil properties. Jenny in particular spoke 
of developing quantitative relationships. Modeling soil properties directly seems more appropriate than 
modeling taxonomic classes when using quantitative statistical models based on physical soil-forming 
processes. There have been many papers published on the use of GIS and statistical inference used to 



develop these relationships with digital spatial data. We will not attempt to refer to other specific work except 
for the recent complete review and framework proposed by McBratney et al. (2003). 
 
Our focus was on the development of GIS tools for production soil survey, not research. Our statistical 
modeling methods draw heavily on the work of others (Gessler et al., 1995)(McKenzie and Austin, 
1993)(McKenzie and Ryan, 1999)(Webster and Burrough, 1972). 
 

2. Materials and Methods 
 
2.1 Study Area  
 
The study site is located in the western Mojave Desert approximately 100 miles northeast of Los Angeles, 
California, U.S.A. The study site receives 76 to 127 millimeters of rain per year with the majority falling 
between November and March. Summer precipitation is common after convection storms. Elevation ranges 
from 180 to 1425 meters. Sampling sites were located on broad alluvial fans and associated landforms. Soil 
development varied from young soils with little or no soil development (Typic Torriorthents) to soils consisting 
of older well-developed fan remnants underlying younger, more recently deposited alluvial material (Argidic 
Argidurids). Vegetation communities are dominated by arid climate shrubs such as Larrea tridentata (Sessé & 
Moc. ex DC.) Coville (creosote bush) and Ambrosia dumosa (Gray) Payne (white bursage) with Yucca 
schidigera Roezl ex Ortgies (Mojave yucca) and Yucca brevifolia Engelm. (Joshua tree) occurring in some 
areas (U.S.D.A., 2004). 
 

 
Figure 1  Location of the Project Area in the western United States 

 

2.2 Attribute selection 
 
The soil attributes we modeled were soil genetic features such as: presence or absence of argillic horizon, 
secondary carbonates, calcic horizon, durinodes, duripan, and separate (continuous) models estimating the 
depth to the occurrence of these features. We also estimated particle-size class. 
 



The resolution of the model spatial input and output data is 30 m. The entire study area is approximately 
288,000 ha. 
 
2.3 Digital Spatial Data 
 
The data layers used to represent the soil-forming environment were DEM and derivatives, band-ratioed 
Landsat Thematic Mapper (TM) imagery (Clemmer, 2003), and geomorphology (U.S. Army Topographic 
Engineering Center and Louisiana State University, 2000). See Table 1. 
 
    Table 1 
    Dependent and Independent Variables 

Variable Names Description 1 
 Dependent  
  
Argillic Argillic (clay accumulation) horizon in the soil: Yes=present, No=absent.  
Argillic Depth Depth to the top of argillic horizon 
Calcic Calcic (carbonate accumulation) horizon: Yes=present, No=absent. 
Calcic Depth Depth to the top of calcic horizon 
Carbonates Secondary carbonates: Yes=present, No=absent. 
Carbonate Depth Depth to the top of accumulation of secondary carbonates 
Durinodes Durinodes (silica masses): Yes=present, No=absent. 
Durinode Depth Depth to the top of accumulation of durinodes 
Duripan Duripan (silica cemented layer): Yes=present, No=absent. 
Duripan Depth Depth to the top of duripan 
Taxpartsize Particle-size class: 30, 33, 40, 44, 46, 50, 54, 59, 63, 69. 
  
 Independent  
  
Gisaspect Slope direction: -1 to 360 DEM derivative 
Giselev Elevation above sea level (in meters) DEM derivative 
Gisplan Plan slope curvature (across the slope) DEM derivative 
Gisprof Profile slope curvature (up and down the slope) DEM derivative 
Gisshape Compound slope shape class (categorical) DEM derivative reclassification 
 9 classes for combinations of concave, linear, and convex 
Gisslope Slope steepness in percent DEM derivative 
Ratio_band1 Reflectance value for band 1 TM Band Ratio  Band 3/Band 2 
Ratio_band2 Reflectance value for band 2 TM Band Ratio  Band 3/Band 7 
Ratio_band3 Reflectance value for band 3 TM Band Ratio  Band 5/Band 7 
landform1 Geomorphic landform general (categorical) 
  
1 See Soil Taxonomy (Soil Survey Staff, 1999) for soil definitions. 

 
The compound slope shape data were derived from DEM data. The plan and profile curvatures were 
calculated as floating point numbers. These curvature numbers were evaluated against a digital raster graphic 
topographic map to assign these values to three classes each. Plan curvature was reclassed to concave, 
linear, and convex based on a subjective comparison to the contour lines. The same process was carried out 
for the profile curvature. The three shape classes for each direction were added together to form nine 
possible classes of compound curvature. 
 
The soil enhancement band ratio product was processed using Landsat Thematic Mapper imagery acquired 
in August of 1993. There was some cloud contamination of the image, however this only appeared to effect 



the results in localized areas. The ratio composite was developed from research conducted previously in arid 
areas in Utah by the U.S.D.I. Bureau of Land Management, National Science and Technology Center.  
 
Although extensive accuracy assessment has not as yet been accomplished, soil scientists in the Utah 
studies found this product to be useful in delineating and pre-mapping soil polygons. The product, along with 
other ancillary data, helped to plan field sampling, find discrete changes in soil make-up, and was very useful 
in helping to map remote and more inaccessible areas in difficult terrain. Although vegetation is directly linked 
to soil type and setting, this methodology appears to be most useful in arid areas where there is little 
interference from vegetation canopies and where more bare soil is exposed. 
 
The indexing ratio uses bands 2,3,5, and 7 of the image and is usually displayed in the following color gun 
assignments: (Red) 3/2, (Green) 3/7, (Blue) 5/7. In this project the resulting digital number at each pixel was 
used as the value item in the models. 
 
In the Utah studies, the 3/2 component was indicative of carbonate radicals (e.g., caliche, limestone); the 3/7 
component seemed to indicate ferrous iron; while the 5/7 component was indicative of hydroxyl radical (e.g., 
clay).  
 
The geomorphology and earth material data have been developed for the entire Mojave Desert region. This 
will form an important consistent data layer for modeling in this area. In some areas it appears to wander a 
little from the apparent landforms. It was developed at a smaller scale (1:100,000) than we are using it at for 
soil survey work (1:24,000). The models derived from these data have the same apparent misplacements in 
some areas. 
 
2.3 Point Data 
 
Three sets of soil point data were obtained from the project area. Field soil profile descriptions were used to 
characterize soil properties at each location. In order to simplify the models all sample points on mountain 
landforms were excluded and the models were not estimated for those areas.  
 
Soil profiles were described at 97 randomized locations (randomly generated UTM coordinates) within a 
30,424 ha portion of an ongoing soil survey project. The data from these randomly located points were 
originally used to fit models. We refer to these as random data points. 
 
Profile descriptions were subsequently obtained from the ongoing soil survey (n=313) (Haydu-Houdeshell, 
2004) and another set (n=392) (Lato, 2002) was obtained from an adjacent, recently completed project. For 
some soil properties these were combined into a larger data set of 656 purposive sample points, after some 
points were eliminated due to missing data. The locations for these data were selected in a traditional manner 
by the judgment of the soil scientists to represent particular sets of soil-forming factors. These purposively 
located sample points are sometimes called judgment samples. We refer to these as purposive data points. 
 



 
Figure 2  Location of Soil Profile Sample Points 
 
The project area is sparsely vegetated and access is relatively unimpaired in most areas. We feel that these 
purposive samples represent the range of the soil-forming factors and that sample location bias will be low. 
Although this bias is not measurable. We wanted to see if it was possible to use these purposive data points 
to fit models for the entire project area. We wanted to make use of these extensive data. We refer to these 
models as models fit to the purposive data. We compared these to the models fit to the random data points.  
 
We also used the UTM location coordinates of the random data points to extract the estimated soil property 
values from the models fit to the purposive data. A comparison was made of these extracted purposive model 
estimates to the actual measured values at the random data point locations (Environmental Systems 
Research Institute, 1998). 
 
A range of methods was applied to develop optimal models. For continuous dependent variables, such as 
depth from surface to a feature, generalized linear models were used after thorough investigation of optimal 
Box-Cox transformations on variables and multicollinearity structures among variables. We then compared 
performance of models on randomly collected data set and purposively collected data set via maps, graphs, 
and summary tables. Various model selection criteria and diagnostic measures were used for these 
comparisons. We also compared the performance of logistic models on the presence-absence variables after 
transformation and multicollinearity checks.  
 

3. Results and Discussion 
 
The resulting models and significant terms are listed below. Box-Cox transformation routines determined that 
the square root transformation for gisslope, carbonatesdept and calcicdept is optimal. We found that model 
fitting, model assumptions, and various diagnostics are better after the transformation. 



 
Table 2 Models and Significant Terms  
GLM Models 
 Overall F R2 Significant terms 

 
 
Summary of GLM models for the randomly collected data set 
 
Model 1: depthcarbnates_  2.09** 29.8% Giselev**, Gisplan**, Gisprof**, 

Ratio_band3**, Gisshape***, Landform1** 
Model 2: durinodes-depth 1.02 45.4% Ratio_band2* 

Model 3: argillic-depth 1.38 35.9% None 

Model 4: thcalcic_dep  0.80 25.2% None 

Model 5: taxpartsize 1.81** 26.6% Ratio_band1** 

Summary of GLM models for the purposively collected data set 
    

Model 1: depthcarbnates_  2.13*** 19.3% Giselev***, Ratio_band1*** 

Model 2: durinodes-depth 2.03** 28.1% Ratio_band2**, Gisshape*** 

Model 3: argillic-depth 1.99** 25.9% Giselev*, Ratio_band2**, Ratio_band3*, 
Landform1** 

Model 4: thcalcic_dep  2.58*** 37.4% Gisshape**, Landform1*** 

Model 5: taxpartsize 
(n=656) 

14.13*** 36.9% Giselev***, Gisslope ***, Ratio_band1***, 
Landform1*** 

Logistic Models 
 Overall 2χ  % 

Concordant 
Significant terms 
 

    
Summary of logistic models for the randomly collected data set 
 
Model 1: calcic 12.08 69.2% Gisprof*, Ratio_band1* 
Model 2: argillic 17.93** 72.5% Giselev*, Ratio_band1** 
Model 3: duripan 15.73** 78.9% Gisplan**, Ratio_band1** 
Model 4: durinodes 21.16*** 77.5% Giselev**, Ratio_band3* 
Model 5: carbonates 10.33 80.5% Ratio_band2 ** 
    
(continued on next page)    



 
 
 
Table 2  (continued)  Logistic Models 
 Overall 2χ  % 

Concordant 
Significant terms 
 

    
Summary of logistic models for the purposively collected data set 
 
Model 1: calcic (n=656) 51.76*** 67.6% Giselev***, Gisplan*, Ratio_band1*, 

Ratio_band3** 

Model 2: argillic (n=656) 51.54*** 66.4% Gisaspect*, Giselev***, Gisprof*, 
Ratio_band1***, Ratio_band2** 

Model 3: duripan (n=656) 31.06*** 65.9% Gisplan*, Gisprof*, Gisslope ***, 
Ratio_band1***, Ratio_band2** 

Model 4: durinodes 33.82*** 68.9% Gisplan***, Gisprof**, Ratio_band1***, 
Ratio_band2** 

Model 5: carbonates 11.86 62.3% Gisslope *** 

*** p-value < 0.01 
** p-value < 0.05 
* p-value < 0.1 
 
 
 
 
Table 3  Comparison of Model Estimates to Actual Measured Soil Properties 
 
                                                                                 Number of Classes Estimate Missed By 
Model Fit 
on Data 
Points 

n Compared 
to Actual 
Values at 
Points  

Correct 
Class 
% 

1  
 
% 

2  
 
% 

3 
 
% 

4 
 
% 

5 
 
% 

6 
 
% 

          
Particle-size Class 
Random 97 Random 31 40 26 1 2 0 0 
Purposive 97 Random 27 43 25 3 2 0 0 
Purposive 656 Purposive 33 37 22 5 3 0.3 0.2 
          
(continued)



Table 3 (continued) 
Model Fit 
on Data 
Points 

n Compared 
to Actual 
Values at 
Points  

% 
Estimates 
within 0 to 
10 cm 

% 
Estimates 
within 10 to 
20 cm 

% 
Estimates 
within 20 
to 30 cm 

% 
Estimates 
within 30 to 
40 cm 

% 
Estimates 
within  
>40 cm 

 
Argillic Depth 
 
Purposive 46 Random 24 11 39 17 9 
Purposive 116 Purposive 31 16 22 14 18 
        
Calcic Depth 
 
Purposive 39 Random 18 39 26 15 3 
Purposive 105 Purposive 33 26 13 10 17 
        
Carbonate Depth 
 
Purposive 97 Random 39 33 15 4 8 
Purposive 219 Purposive  39 35 12 3 12 
        
 
 
 
These comparisons are made to the point data used for fitting a particular model and to the random point 
data.  
 
The particle-size class comparison is for class assignment. The model estimate was assigned to the nearest 
class. The classes are indicated by a number code used in the National Soil Information System (U.S.D.A., 
2004). The classes are: 30 sandy-skeletal, 33 loamy-skeletal, 40 sandy, 44 loamy, 46 coarse-loamy, 50 
coarse-silty, 54 fine-loamy, 59 fine-silty, 63 clayey, and 69 fine. These class numbers are ordinal. Low 
numbers are coarse and high numbers are fine textures. The model assigned class was correct or within one 
class for approximately 70% of the sample points. This is true for both types of models and for comparisons to 
both types of sample points. The estimates were within two classes of the correct class for 92-97% of the 
sample points over an area of 288,000 ha (~712,000 acres).  See Figure 3 for a map displaying the output 
from the purposive data model.  
 
The comparisons for continuous estimates of depth to a certain genetic feature show a range of model 
performance. The model for depth to secondary carbonates performed best. The estimates were within 20 cm 
of actual measured values for 72% of the random sample points and 74% of the purposive sample points. 
The model estimates for calcic horizon depth were within 20 cm for 57% of the random points and 59% of the 
purposive points. The estimates for the depth to an argillic horizon were not as reliable. 
 
The models based on logistic regression for the presence or absence of features are harder to evaluate. The 
model for probability of argillic horizon performed the best. The model fit to the random point data was much 
more sensitive, more accurate, and showed a greater range of estimated values than the model fit to the 
purposive data, even though there were many more purposive data points representing each level for each 
explanatory variable. Graphs of predicted versus actual values for each of the models showed a trend of 
agreement to actual values. Space limitations do not allow us to show graphs and maps displaying these 
results. More work is needed to improve these models. 



 
Figure 3  Model Estimate of Particle-size Class 



 
Future work will focus on increasing the number of soil properties evaluated for the larger purposive point 
data set. We will also look into combining the binomial models (presence/absence) of features with the 
estimates of depth for those features, e.g., to produce a map estimating areas with 50% probability of the 
presence of an argillic horizon with estimates of depth in those areas. We also hope to improve the models 
for depth estimates so that several soil feature surfaces can be visualized in 3-dimensional perspective view 
draped over a land surface. These combinations of continuous estimations of soil features could form new 
soil survey products, when the models perform better. In this study each dependent variable was modeled 
separately, but future study needs to include modeling taking multiple dependent variables into account, i.e., 
from multivariate point of view. 
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