Load Balancing ArclMS with an Apache/Tomcat Reverse Proxy

by

Victor R. Conocchioli, M.S.,

State of Minnesota
Department of Transportation

GIS Administrator

Load Balancing ArclMS with an Apache/Tomcat Reverse Proxy
Victor Conocchioli
Abstract

Load balancing hardware with ArcIMS delivers high performance map services. This paper discusses
the hardware and software requirements to integrate ArcIMS with Load Balancing hardware, Apache,
Tomcat, and Firewall access to ArcSDE. The system architecture provides good throughput as well as
security for public ArcIMS Web sites. Apache Reverse Proxy can serve Tomcat and ArcIMS content on
the same or other networked server while translating URLs to control access to network infrastructure.
RedHat Linux was chosen for the operating environment. ArcIMS deployment and operating
procedures were developed for integrating MS Windows and Linux system users. The Minnesota

Department of Transportation created an example of this architecture to publish a large volume of
spatial base map data.

Table of Contents

1. Executive SUMIMAIYcccovevvemrvmrseerseessensseesssessne saeesses 4
PN 11114074 1) (61 10) 5
3. Infrastructure DeSIZNccooeeeerserererrereseserenesesesessnenens 5
3.1 Load Balancingcccceeeeeeeeeercercerceecereeceeseeseeenens 7
3.2 Apache/Tomcat Reverse Proxycccceceeeeeeveeenene 7
4. Software Configurationccceeeeeeeeereererseereseeseresennes 8
4.1 ArcIMS and Red Hat LinuxXccccoeeeeeeeeceeeeenenee. 8
4.2 Apache/Tomcat communication with ArcIMS 9
4.3 Apache mod_securitycccoceerveereeerrerererscrnenn 10
5. Web Content Deploymentcccccooeeereersercerieriererersennens 10
5.1 Application Administration Processcccceu..... 11
5.2 Authenticationcccceeeeeeeeeeeeeseececeeee e eeeeaeeaens 11
5.3 File System Organizationc.cceeeeereeressersessnnenns 13
5.4 System Administrator Componentscccceeuen... 13
5.4.1 Deployment Support Utilitiesc.cceucn.... 13
6. Conclusions and Future Developmentscccccceeueuenee. 15
Y o] 011 o T | P 16

1. Apache Reverse Proxy configuration file directives
2. Example mod_security rule for ArcGIS access
3. Red Hat System V script for ArcIMS

REIEIENCES ... et 19

1. Executive Summary

The Minnesota Department of Transportation (Mn/DOT) provides access to a large spatial data set
through interactive Web page programs. These data represent a comprehensive set of digital maps
that support transportation planning and design. ESRI's ArcIMS system enables the interactive
retrieval of map data from a Web browser and through the tools in ArcGIS clients. This paper
discusses an infrastructure built around ArclMS to deliver mapping services to the public Internet as
well as internal customers.

We chose components to build our infrastructure that would maintain security as well as provide ease
of access to the transportation data. The strategy to install components that are designed to form
connections with ArcIMS gives our infrastructure flexibility to meet changing enterprise needs.
Components installed from the Cisco load balancer, Apache Reverse Proxy, Tomcat, Red Hat Linux
and in-house developer support software interact with ArcIMS to complete a system that
accommodates a variety of transportation Web applications.

The typical ArcIMS installation serves a small number of Web developers when built in a centralized
configuration. However, Mn/DOT supports a large enterprise user and Web developer base. Our
infrastructure reconfigures ArcIMS into a multi-user Web content development system. We added
user authentication connections to Microsoft Active Directory through the Vintela Authentication
Services. Single sign-on authentication accommodates the growth of ArcIMS development. Active
Directory authentication allows user groups based on Web content topic to develop ArclIMS map
services in a centrally managed environment.

A centralized ArcIMS installation standardizes development processes and system recovery. Web site
developers and system support teams establish naming conventions which also reflect in server
storage structures. System imaging and backup occur at one location to minimize overhead in
recovery or image restoration tasks. User authorization separates ArcIMS services into groups that
develop in their respective content areas. Our ArcIMS infrastructure will readily adapt as Web delivery
and deployment processes advance with new Web serving technologies.

2. Introduction

The Minnesota Department of Transportation provides interactive Web applications to view geographic
data for public Internet users. ArcIMS delivers the interactive applications through an Apache/Tomcat
infrastructure running on the Red Hat Linux operating system. A large volume of data requests by
customers necessitates high availability and redundancy in designing the system. This paper
discusses the components of the ArcIMS system and how they work together to achieve a secure,
reliable and high performance infrastructure.

3. Infrastructure Design

ESRI supports several methods for configuring ArcIMS on Web servers. More common designs use
Tomcat Java server in combination with the Apache http (hyper text transport protocol) Web server.
The Apache serves static Web content from Tomcat. ESRI officially supports the loadable module
(mod_jk) connector for use with ArciIMS. An alternative to the mod_jk connector is the Reverse Proxy
method."” We chose the Apache Reverse Proxy method because of ease in maintaining the
configuration with Tomcat and implementing firewall changes when required. (lllustration 1 shows the
infrastructure components and networking in our system.)

The Mn/DOT ArcIMS computer system infrastructure requires a high performance and high availability
map delivery system to our Internet customers. We designed the system around a Cisco Content
Service Switch (load balancer) to serve identical ArcIMS servers. Each of these servers connect to a
back-end ArcSDE/Oracle data base server located within our internal network. The access to the
spatial data is read-only and the back-end server operates with a Storage Area Network for
redundancy and reliability. Mn/DOT built these servers with ArclMS to design a base map template
that several offices use to launch their Web sites.

Firewall

—
Internet* @ _ o
= Port 80 Cisco Conlent Service Swilch
http:/lgismaps.dot.state mn.us / \

DMZ l

Lﬂad E-E.IEHE-Ed ArclMS Sepver & 1 Load Balanced AueTMS Server # 2

g} ArcSDE Port

A—
AreSDE and Oracle Database Server

Hllustration 1: ArcIMS Infrastructure

3.1 Load Balancing

A set of load balanced ArcIMS servers forms an ideal service administration environment. One server
can be taken down for maintenance or reconfiguration while the ArcIMS services remain available.
The load balancer sends a keep-alive signal to each Apache server to determine if either one is up
and running. A load balancer can be configured to assign sessions based on round-robin or on
numbers of concurrent sessions. In our configuration, we send client browsers connections to the
server with fewer sessions.

The load balancer infrastructure requires that all ArcIMS components stay within the same computer.
The reason for this constraint is that ArcIMS processes requests from and delivers output to the
Apache static Web content locations. These locations are known as website and output in the default
installation. When a browser initiates the connection through the load balancer, the browser must
remain with the computer where it started the ArcIMS request. The load balancer must be configured
to use a “sticky session” for about 30 minutes before a timeout. If we designed the infrastructure by
separating Apache, Tomcat and ArcIMS on different computers, we would increase the complexity in
the load balancer farm.

3.2 Apache/Tomcat Reverse Proxy

ArcIMS requres a front-end Java application server to deliver spatial content to the Web. We use the
Tomcat open source Web server. The Tomcat server runs as a non-privileged account in Linux. Unix
standards enforce a rule that non-privileged accounts must use TCP/IP port numbers above 1000.
Tomcat serves its content on port 8080 by default. Most Web users do not prefer or may not be
allowed to access Web servers that serve Web content outside of the standard port 80. There are
three techniques to allow Tomcat to serve content through port 80 in the Linux environment. They are
listed in order of preferred implementation.

1) Configure Apache with Reverse Proxy directives
We found this to be the easiest method to create the Tomcat front-end while serving the

ArcIMS content from the website and output directories." There may be one caveat in
this method, see section 4.2 below.

2) Configure Apache with the mod_jk connector
This will require significant overhead with maintaining files on both the Apache and
Tomcat configurations. The mod_jk connector is no longer supported by the Tomcat
developers.

3) Reconfigure the Linux kernel at the networking level to redirect port 8080 to 80.

This is difficult and prevents Apache from running on its normal port 80.

The Reverse Proxy method works well for ArcIMS and allows flexibility for creating secure Web
services. The Proxy rewrites URLs seen by the client Web browser thus hiding access to a Web
service or other back-end computer. Apache directives for an ArcIMS Reverse Proxy are given as
examples at the end of this document. We set up our infrastructure to deliver content to the World
Wide Web. This exposes a computer to many potential security concerns. The Apache Reverse Proxy
provides a good first step in implementing adequate security on the Web. We added an additional
module to the Apache Reverse Proxy to complete a secure infrastructure. The Apache Mod_security
option will be discussed later in this document.

4. Software Configuration

The greatest challenge in setting up our infrastructure was coordinating the operation of all
infrastructure components. Each infrastructure piece has particular settings that needed to be
researched and tested throughout the whole ArcIMS installation. We started with configuring ArclIMS
within the Red Hat Linux operating system including critical networking and system management
pieces.

4.1 ArcIMS and Red Hat Linux

The ArcIMS installation CD for Red Hat Linux follows a simplified wizard to create an initial set up. We
build our Red Hat servers without any graphical displays so installation occurs remotely through a
Linux workstation or a Windows machine using Hummingbird Exceed. ESRI recommends that the
ArcIMS account execute in the C-Shell. We use the tcsh, which is a Cornell University variant of the C-
Shell. This shell allows for command line completion, retrieval and editing. Red Hat provides this
package in the default system.

An advantage of running ArcIMS in the Red Hat Linux environment allows the strict separation of the
operating system and the application administration functions. ESRI provides shell scripts to
automatically start ArcIMS from a system reboot. However, these shell programs do not conform to
what is known as Red Hat System V init script standards. We have adapted the ESRI start up shell
scripts into a Red Hat init script template. The system administrator simply types: service aimsd start
or service aimsd stop to recycle ArcIMS. We also use the Unix sudo mechanism of Linux to give
ArcIMS application support administrators the rights to recycle the ArcIMS system. An example of our
System V script can be found at http://gismaps.dot.state.mn.us/ArcIMS/supplement/aimsd.sh or at the
end of this document.

When the infrastructure team completes all the system planning, configuration and tweaking, a
backup/disaster recovery procedure known as imaging must be performed on the system. Imaging
provides two benefits, one to create a quick recovery of the entire system and second, to use as a
baseline in creating identical systems. Our ArcIMS infrastructure consists of a development, a
test/staging and two production Dell 2850 computers. Imaging ensures configuration consistency
throughout each machine. All of the ArcIMS configuration files use the name of localhost for
networking to keep the set up of ArcIMS generic. This technique allows a fully configured ArciIMS
installation to be cloned into another computer. The most common programs for cloning Linux are
Ghost and the open source program called Partimage.

4.2 Apache/Tomcat communication with ArcIMS

The Apache Reverse Proxy creates an easily managed and good performing front-end to a Tomcat
Java Web server. Unlike the mod_jk connector, the Reverse Proxy requires only one set of
configuration directives to maintain in central Apache httpd.conf file or the conf.d directory. The
proxied Tomcat server can be on the same machine or on another networked computer. (lllustration 2
shows the logical connections between all major software components in the infrastructure.)

ArcIMS System Soltware Architechiure

Red Hat Enterprise Server version 4.0 (runs on Dell 2850)

ArelMS Java Machines

Apachehnpd Web Server Tomenal version 5.0.28 Application Server version 9.0.1
Fod Ha version 2052 2 gighyvic jana machine java machine |28 megabyte
hnpd .conf: peverse proxy sctup webappsserviet

i . a - F 9

T

ArcIMS Momniabor ArcIhlS Tnsker
64 megabiye java &4 nreEabyic java

L4
Windows-based compuier
ArcSDE 9.1
Omacle 10 Data Base

Hlustration 2: Software Components

The Proxy rewrite engine can create very sophisticated and complex rules using regular expressions.
We implemented the Reverse Proxy in a very simplified configuration. A small section of our Apache
configuration file included in the Appendix gives the necessary directives to establish the Proxy
between Apache, Tomcat and ArcIMS.

4.3 Apache Mod_security

The Mod_security project complements Apache with a mechanism to scan incoming http GET or
POST requests. Most concerning are POST requests, which put data from a client browser onto the
ArcIMS server. APOST request may contain scripting programs that attempt to compromise server
security. Each incoming URL from a client Web browser proceeds through a set of rules to check for
any malicious attempt to break ArcIMS. Basic mod_security installation begins with a minimal set of
rules. The minimal set is adequate for most ArclMS implementations. However, we found that when
ArcGIS (workstation or server) acts as a client to a ArcIMS, one of the rules requires modification to
allow ArcGIS to POST URL data to the Apache server. See the Appendix of this document for the
modified rule. Mod_security can be obtained from http://www.modsecurity.org

5. Web Content Deployment

A reliable and well maintained ArcIMS Web service depends on good organization of the contributing
Web content. The website directories, AXL files, static Web content and developer access should be
standardized by system administration components of file system structure, development interfaces
and user access procedures. This section gives examples of ArcIMS file structures and discusses
strategies for developer access to ArcIMS.

5.1 Application Administration Process

The Linux operating system design allows for a clear separation between system level and application
administration processes. ArcIMS programs, Web content, and pre-deployments can operate in a non-
privileged environment. This prevents any unintentional effects on system performance, infrastructure
stability and Web service design/testing. We separate the production system from the developer
environments. (lllustration 3 shows the relationships between our systems.)

Our developer desktops typically run in the Microsoft Windows system software. We load two easily
installed programs for access to the ArcIMS computers. Hummingbird Exceed is a licensed X-terminal
emulator that displays Linux graphically based programs such as ArcIMS Administrator or Developer
on the Windows desktop. SSH client software allows authenticated logins to the ArcIMS servers and
file transfer from the developer workstation. Linux desktops do not need either of these programs
since the software comes with nearly all installations.

10

A T
___,_—' 1 A rad B
'._ e e — Fanr S ag b S
| Pt : o e
e Port BD /ﬁ P —
Pirg Ngrimaps 4ol SEalE min s _'_,_.-"'--'--d'"
e .. —

-

.|:' e
DMZ D D wi .*-. '
/ &

'-.

\ /

ArcSDE Port ."I

{

i IS D bospaian Scive

ArcSld ardd Dradls Dufsbasn Soreps

Hllustration 3: ArcIMS Application Development Support

5.2 Authentication

The development and test ArcIMS servers require developers and application administrators to log in
to a user account. This differs from the ArcIMS service authentication handled within the ArcIMS
system. Each development group manages an area of Web application content on the servers. We
grant ownership and group access through Lightweight Directory Access Protocol (LDAP) so that
development groups can protect their own AXL files and directory structures. Our organization uses
the Microsoft Active Directory for network user accounts and general workstation logins. We
purchased a product by Quest Software called Vintela Authentication Services (VAS) to connect Red
Hat Linux authentication into our Active Directory. The application development groups that we create
in the Active Directory map to permissions in the Red Hat Linux file system to support ArciIMS.
(lllustration 4 displays the set up of Microsoft Active Directory Users and Computers with our ArciIMS
developer groups.)

1

15

o mmie xF0E 7 DERVEE

= & [rgresrsg rowe Ceessr
= gl Litereg S g
o i Ditwirsn e
+ gl Froad e aned Bohraud] whon Devisn
&} Fermrtae kB
5 il B T dereern
=l R el ol w0 e Tk [
= il Desctrore: Comem s sarg
&l Fheestor Techrning
7 gl Bopd i Mo
=l g
= WL
&l I rfrmeacture
=l D ared Rk e
=] Applc wen
ol Adnewirsiar
v @l e
— gl Ty
= [l Oz B
= gl et
= g Faihiea
= [L AT Smrvery
- =
i il vl
Bl L i
& g8 Wb Coréeer
v g Dol abemmer
Tl et e W
T et e v
= gl L Lppet
o L
T e
= g TraMT ey an pengcra
= @ Troroparisfen Dats s Srabean
i g ey Msacerwid e

]

B
e lgpert

OfumdEes

0 T e Bwecap Db

SOk 2 Support Link

Platie

Fiadin whal e Wik o

Syl Dl (fmile Saah
gy M. Tt Fib e O (DM

il

Hlustration 4: ArcIMS Active Directory Groups

12

5.3 File System Organization

The default ArcIMS installation creates a directory for AXL files and for each Web site. A multiuser
configuration requires that each AXL file retain owner and group information for each developer. The
website directory structure begins with ownership by a local arcims account created to run the ArcIMS
software. Subdirectories below the website directory contain ownership or file permissions for each
developer. In the Linux file system configuration, the top level website directories have the “sticky bit”
or “set GID” permission set. This permission setting will be inherited for all files and subdirectories
created below the website directory.

Our developer and test/staging systems contain nearly identical ArcIMS file system structures. As
ArcIMS Web sites and services are developed, they will be copied through workstation software to the
test/staging system. Meta data is kept in a common directory in one location on each ArcIMS
computer so that all map services display consistent information. The developers review and test the
Web sites before submitting a request to the system administrators to deploy the ArcIMS production
Web site.

5.4 System Administration Components

The developers and application administrators do not directly access our production ArclMS servers.
When the developer submits a production deployment request to system administration, support
software creates a Unix tape archive or “tarball” bundle of the ArcIMS system in the developer's home
directory. We developed the support software as an aid for the creation of the tarball.

5.4.1 Deployment Support Utilities

The ArcIMS Linux servers have no displays and only serve users through command line logins. Our
developers prefer to work with graphical programs to perform tasks. An open source project called
Xdialog by Thierry Godefroy provides a method to create graphical dialogs through Unix shell
programming. We used the Xdialog package to give developers a graphical interface to create a
tarball of their ArcIMS Web sites that system administrators deploy to the production servers.
(Nlustration 5 shows the beginning of a series of interactive dialogs to produce the deployment.)

The archive produced by Xdialog contains all the files, directories and paths within the Linux file
system in a single disk file. Our system administration group runs an automated deployment program
to copy the archive to the production systems. We developed the deployment program to simplify the
process. The archive is unpacked on the two load balanced production systems into the correct file
path locations. System administrators run the final step to create a map service through the ESRI
aimsadmin uitlity on each load balanced server.

13

Fieass siFleci (or craale) a direciony o place the tarball. Double click into direciony.

Creates Dir Diplete Fie Fename Filg

MMomedarcims: w

[#]

CHraciories

Selacion: MomeSarcims

S ok || | % cancal

Ilustration 5: Xdialog Interactive Menu

14

6. Conclusions and Future Developments

The release of ArcIMS for the Linux platform integrates well into a development and deployment
infrastructure that delivers reliable, high performance map services. Red Hat Linux has good support
processes to complement the installation with Web servers, security, developer interaction and
comprehensive administration. Our baseline system can be imaged and restored with minimal effort.
These features incorporate a design that can be scaled and grow to meet changing enterprise needs.

Our ArcIMS infrastructure has the following components that give it good flexibility and manageability:

(1) Reverse Proxy — communicates well with Tomcat and ArcIMS, very stable, can be reconfigured
easily

(2) Load Balancing — provides high performance map services and ease of server maintenance,
the server farm can be scaled to accommodate needs

(3) System Imaging — creates clones to keep configurations constant between systems, reduces
troubleshooting efforts

(4) Developer Interfaces — implements familiar graphical interaction method to create deployments

(5) Security — allows ArcIMS to serve the World Wide Web with low risk to enterprise networking
and computing

As software releases become more sophisticated our system can grow with the technology. At some
future point, ArciIMS will communicate with Jboss and Apache 2.2. These two Web servers will have
features that improve on the current schemes. We also will move into 64-bit computing to break
through the 2 gigabyte barrier for the Java virtual machines. This will permit large scale mapping and
placing more applications into the map server. Improvements in networks with gigabit speeds will
create opportunities to access much larger data bases. In conclusion, the future with these

infrastructures will deliver map services to a larger user base promote growth in the map consuming
community.

15

Appendix

1. Apache Reverse Proxy configuration file directives

Redirect permanent /esriconn http://<Apache/Tomcat/ArcIMS computer name>/esriconn

<Location /esriconn>
ProxyPass http://<Apache/Tomcat/ArcIMS computer name>:8080/serviet
ProxyPassReverse http://<Apache/Tomcat/ArcIMS computer name>:8080/servlet
</Location>

Redirect permanent /servlet http://<Apache/Tomcat/ArcIMS computer name>/servlet

<Location /servlet>
ProxyPass http://<Apache/Tomcat/ArcIMS computer name>:8080/serviet
ProxyPassReverse http://<Apache/Tomcat/ArcIMS computer name>:8080/servlet
</Location>

Redirect permanent /esriadmin http://<Apache/Tomcat/ArcIMS computer name>/esriadmin

<Location /esriadmin>
ProxyPass http://<Apache/Tomcat/ArcIMS computer name>:8080/esriadmin
ProxyPassReverse http://<Apache/Tomcat/ArcIMS computer name>:8080/esriadmin
</Location>

</VirtualHost>

2. Example mod_security rule for ArcGIS access

Only accept request encodings we know how to handle

we exclude GET requests from this because some (automated)

clients supply "text/html" as Content-Type

SecFilterSelective REQUEST_METHOD ""(GET|HEAD)$" chain

SecFilterSelective REMOTE_IDENT "*ArcGIS/*$" skipnext

SecFilterSelective HTTP_Content-Type "!(*application/x-www-form-urlencoded$|*multipart/form-
data;)" skipnext

SecFilterSelective HTTP_Content-Type "!(“application/x-www-form-urlencoded$| multipart/form-
data$| text/text$| text/plain;)"

Do not accept GET or HEAD requests with bodies
SecFilterSelective REQUEST_METHOD "A(GET|HEAD)$" chain
SecFilterSelective HTTP_Content-Length "I"$"

Require Content-Length to be provided with

every POST request

SecFilterSelective REQUEST_METHOD "*"POST$" chain
SecFilterSelective HTTP_Content-Length "A$"

Don't accept transfer encodings we know we don't handle
SecFilterSelective HTTP_Transfer-Encoding ""$"

16

3. Red Hat System V Script for ArcIMS

#!/bin/sh

#

letc/rc.d/init.d
#

Automatic start of the ArclIMS web server running Linux system
#

chkconfig: 345 84 15

description: Activates the ArcIMS web server which

processname: java

#

#

Source function library.

. letc/rc.d/init.d/functions

debugfile=/home/arcims/arcims.log
AIMSHOME-=/ea/adm/arcgis/arcims
J2SDK_HOME-=/usr/java/current
lockfile=/var/lock/subsys/arcims

chkuptime() {

upt="uptime | grep min’

if [-n "$upt"] ; then
upmin="echo $upt | tr-s'"'| cut-d'' -3
if [Supmin -le 2] ; then

sleep 35

fi

fi

}

#echo "HHHHHHHHHHHHHHHHHHEHHRHHRHHRHHRHHH AR >> $debudfile
HeCho "HHHHHHHHHHHHHHHHHHHHHRHHHHRHRHHHHHH A >> $debudfile

#echo "Initializing debug file" >> $debugfile

#echo "date™ >> $debugfile

#echo "Current working directory is: "pwd™" >> $debudfile
#echo "Script called with parameter $1" >> $debugfile
#echo "arcims in ‘pwd" called with parm $1" >> $debudfile

RETVAL=0

See how we were called.
case "$1"in
start)
arcims 5 starting up
if [! -f $lockfile] ; then

echo "Starting arcims from runlevel with parm $1" >> $debudfile

chkuptime

touch $lockfile

su - arcims -¢ "cd $AIMSHOME/Xenv; tcsh aims_bootup"
echo -n "Starting ArcIMS service daemons: "
echo_success

echo

17

echo_success

echo

pgrep -U arcims 'aims*' >> $lockfile
pgrep -U arcims 'java*' >> $lockfile

else

echo "Lock file: $lockfile exists, assume arcims already running, will not run startup script"
echo "Lock file: $lockfile exists, assume arcims already running, will not run startup script" >> $debudfile
fi
stop)

if [-f $lockfile] ; then
pgrep -U arcims 'aims*' > /tmp/pidnow
pgrep -U arcims 'java*™ >> /tmp/pidnow

aipid="cat /tmp/pidnow" ; /bin/rm /tmp/pidnow
if ["$aipid" == ""cat $lockfile™] ; then
echo "Stopping ArcIMS service daemons: "

echo "Shutting down ArcIMS through $AIMSHOME/Xenv/aims_shutdown" >> $debugfile
su - arcims -¢ "cd $AIMSHOME/Xenv; tcsh aims_shutdown"
echo "After SAIMSHOME/Xenv/aims_shutdown" >> $debugfile

echo -n "Stopped ArcIMS service daemons: "
echo_success

echo
else

echo "No matching arcims pid=$tcpid for saved="cat $lockfile™"
fi
pgrep -U arcims 'aims™' > /tmp/pidnow

pgrep -U arcims ‘'java* >> /tmp/pidnow
aipid="cat /tmp/pidnow" ; /bin/rm /tmp/pidnow
if ["$aipid" == ""cat $lockfile™] ; then
echo "ArcIMS still running, aims_shutdown failed, killing manually"
for each in $aipid ; do
kill -9 $each
done
fi
rm $lockfile
else
echo "Lock file: $lockfile does not exist, assume arcims not running, cannot run shutdown script"
echo "Lock file: $lockfile does not exist, assume arcims not running, cannot run shutdown script" >>
$debudfile
fi

status)
aipid="pgrep -U arcims java | tr \n' 040"
if [-n "$aipid"] ; then
echo "ArcIMS (pid $aipid) is running..."
else
echo "ArcIMS is stopped"
fi
RETVAL=$?

echo "Usage: aimsd {start|stop|status}"
echo "Usage: aims {start|stop|status}"
exit 1

esac

exit SRETVAL

18

References

1. ArcGIS® Enterprise Security: Delivering Secure Solutions, An ESRI® White Paper, July 2005

Victor R. Conocchioli

State of Minnesota

Department of Transportation, GIS Administrator
MS 240

395 John Ireland Boulevard

Saint Paul, Minnesota 55155

phone: 651-296-6094

fax: 651-297-1473

email: vic.conocchioli@dot.state.mn.us

19

