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Abstract

Public health agencies are interested in making effective use of disease reporting data and 

developing a better understanding of disease outbreaks.  Methods of using Geographic 

Information Systems (GIS) to accomplish these goals were investigated as part of a larger study 

of disease surveillance.  Two GIS-related aspects of this work are presented.  First, an 

ArcObjects-based tool was developed for visualizing and monitoring disease outbreaks using 

information that is now available in recently-developed electronic disease surveillance databases.  

This provides public health agencies with the ability to understand the geo-temporal nature of 

outbreaks in near real-time.  The resulting tool has been demonstrated on both simulated and 

actual disease outbreak data.  Second, a contact network-based simulation of disease outbreaks 

was developed to provide an environment for assessing new surveillance concepts.  An important 

component of the model is a variable capturing the degree of connectivity for both individuals 

and areas.  Concepts for generating contact networks from GIS data are presented.  An example 

of generating an alternative index of connectivity based on travel times is discussed. 

1.  Introduction 

Public health organizations regularly collect surveillance data which is increasingly being 

stored electronically.  This information is potentially very useful to the public health practitioner 

to review endemic disease levels, recognize outbreaks, and determine the source and proper 

response of outbreaks.  GIS can be used to present multidimensional space-time indexed data in 

a manner that enhances data interpretation and data exploitation efficiency.  The simplest output 

from a disease surveillance database is a list of numbers, such as cases, indexed on location and 
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time.  The interpretation of this information by a public health practitioner may be enhanced if 

the spatial locations are displayed on a geographic map, which can be updated over time 

intervals.  In addition, alternate representations, where the data are aggregated over geographic 

area or time interval, may present occurrence information in a GIS framework that can 

potentially aid epidemiological investigations and outbreak response. 

Methods of displaying disease outbreak data from an electronic database as a function of 

location and time were investigated using both simulated disease outbreak data and a  historical 

disease dataset from the State of Michigan.  A multidisciplinary team of researchers from the 

Altarum Institute has collaborated with epidemiologists from the Michigan Department of 

Community Health and the University of Michigan School of Public Health to study methods of 

simulating, detecting, analyzing, and visualizing disease outbreaks using computer simulations 

and geospatial analysis tools.  The goal of this effort has been to develop enhanced methods of 

detecting and responding to emerging infectious diseases and potential bioterror events.  This 

paper will discuss two aspects of the research that used ESRI software tools to investigate the 

potential of geospatial analysis to enhance the modeling and analysis of disease outbreaks.

Specifically, the development of a GIS tool to visualize and analyze data in disease surveillance 

databases will be discussed, and then a novel concept for using GIS information to advance 

disease outbreak simulation will be presented. 

2.  GIS-based Visualization and Exploitation of Electronic Disease Databases

Desktop ArcGIS was used to display the data as a function of location and time.  Results 

were also aggregated over space and time, e.g. county and month.  The results were presented to 

public health practitioners to evaluate the utility of various GIS maps for displaying and 

understanding endemic disease levels, the variation of disease outbreaks with space and time, 

and the relationship of the disease data to demographic data. 

The GIS products displayed were considered useful by the public health practitioners.

However, the manual production of the initial examples was a labor-intensive process.

Therefore, an ArcObject-based tool was developed to automate the production of GIS 

visualization from an electronic disease database, to compare the current disease data to the 

historical background level, and to allow the user to change evaluation parameters.  This tool, 
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called the “disease outbreak GIS visualization tool” (or “GIS outbreak tool” for short), provides 

the capability to automate the production of GIS products from historical data available in 

electronic disease surveillance databases and to provide a means of comparing current disease 

data to the historical level of incidence.  This GIS outbreak tool is designed to track how many 

cases have occurred in specific areas in a defined time period.  The purpose is to be able to “ring 

the alarm”, or alert public health, if the number of cases exceeds a certain threshold in a defined 

geographic area.  For example, if a user such as a public health official determines that a disease 

incidence occurring in greater than 1% of a county population over a two week time period is a 

matter of concern, then this threshold could be detected through our ArcObjects tool.  In its 

current form, our GIS outbreak tool allows the user to select either counties or 2000 Census 

tracts as the evaluation area, the length of the time period to consider as “recent” cases, and what 

threshold in cases per 100 people should be considered as a level of concern.  Figure 1 shows 

how a disease database has been visualized by cases within a one-week time window for 

Michigan counties, and how certain counties are above the user-selected threshold.
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Figure 1:  Example of output from outbreak visualization tool. 

A description of the programming and geospatial layer parameters underlying the tool 

follows.  The GIS outbreak tool was created as an ActiveX Dynamic Link Library (DLL) using 

Microsoft Visual Basic 6, and runs within ESRI ArcGIS version 9.0 and later.  In order to use the 

tool, an input shapefile is needed that contains point data with a corresponding field that 

represents an event date (OnsetDate) that represents the time of disease onset (see Figure 2 for an 

example of the tool’s user interface).  These points represent the geographic locations of people 

who at one time became infected with the disease in question.  A layer is created from this 

shapefile and is assigned a “ClassBreaksRenderer” software object as its renderer.  The user 

determines the infectious period with a dropdown box.  When the user selects a date 

(SimulationDate) from the calendar control box, the ClassBreaksRenderer object is updated so 

that points will be displayed as a red dot if: 
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 (SimulationDate – InfectiousPeriod) < OnsetDate  SimulationDate 

That is, if the person is still considered to be infectious on the SimulationDate, display the person 

as a red dot on the map. 

 To use the alarm functionality, the user must also supply a geographic regions layer (such 

as counties or Census tracts), which must be a polygon shapefile.  When the SimulationDate is 

set, the program code uses the ArcObjects parameter “ISpatialFilter” to count the number of 

people that are inside a region who are also considered infectious.  This number 

(InfectiousLevel) is optionally normalized by user selectable field, and stored in another field 

within the geographic region shapefile.  If the “InfectiousLevel” value is higher than a user 

defined threshold, a balloon style message (using the “IBalloonCallout” object available in 

ArcObjects) will originate from the centroid of the region alerting the user and the region will be 

automatically selected.  Also, the user can then render the geographic region layer based upon 

the updated InfectiousLevel field using ArcMap’s native rendering options. 

Figure 2:  A screenshot of the user interface for the GIS outbreak visualization tool. 

3.  Enhanced Disease Propagation Simulations Using Contact Networks From GIS 
Information for Bio-Surveillance 

We have also developed and demonstrated a computer simulation of disease propagation 

through contact networks.  This statistical simulation models disease propagation through a 

population via person-to-person contact.  The simulation allows the detection performance of 

bio-surveillance approaches to be studied as a function of spatial resolution (such as the size of 

geographic areas used in reporting) and the temporal resolution of reporting.  Temporal 

resolution reflects both the rate at which time samples are collected, as well as the time delay in 
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reporting.  Further, the simulation framework provided a virtual environment for assessing new 

surveillance concepts and algorithms, such as syndromic surveillance.  

The computer simulation, which is based on disease propagation via contact, tracks the 

spread of disease over time through individuals displaced over a geographic area.  The 

probability of transmission between individuals was based on a transmission rate, which was 

deduced from historical data, and a contact probability, which described how likely it was for 

two individuals to come into contact.  The contact model used in the baseline simulation simply 

considers the distance between two individuals to determine the probability of contact.  The 

baseline simulation appears to do a reasonable job of modeling temporal evolution of the disease, 

but has a rather simple contact model. 

The computer simulation code is split into two parts.  The first part is a Mathworks 

MATLAB script that takes simulation parameters such as transmission rate and contact 

probability, as well as a table that contains geographic locations for each individual that is part of 

the simulation, and outputs a text-formatted table that contains rows of data describing simulated 

individual case data such as unique ID, generation of infection (how many degrees of separation 

from the source infection), transmission time, symptom onset time, and doctor visit time.  This 

table is then imported into two programs.  For statistical analysis, it is processed with additional 

MATLAB scripts.  A desktop application created using Visual Basic 6 is used for spatial 

viewing.  The application used a customized ArcObjects-based MapControl to convert the ASCII 

text file into a shapefile and display the data.  The user provides the number of days after the 

initial onset event and the software code calculates the infection status for all cases at that point 

in time, including the stage of infection, presence of symptoms, and level of medical attention for 

each individual.  These three parameters are determined by comparing the user selected time 

with time fields stored in the shapefile that represent onset reporting events.  A three character 

string describing the current state of the disease for each individual is stored in a field and 

rendered according to a specific scheme.  Because the individual’s stage of infection, the 

presence of symptoms, and the level of medical attention received may be independent from 

each other, a rendering scheme is used that describes infection stage with color, symptom 

presence with either hollow or filled points, and medical attention level with shape, as shown in 

Figure 3.  Figure 4 displays the results of the disease propagation simulation with two different 

transmission rates, with the results being generated through the ArcObjects-based code. 
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Figure 3:  Example GIS output from the bio-surveillance simulation. The results for an 
outbreak of an influenza-like virus in a 13 county area are shown.  The images are from 
days 2 (a), 12 (b), 20 (c) and 30 (d) of the outbreak. The transmission rate is 0.2.

a) b)

c) d)
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Figure 4:  Example output from the viewer for the disease propagation simulation, 
shown for a four county area in Michigan with two different transmission rates. 

The probability of contact between two individuals, either within a population group, or 

between population groups is influenced by more factors than their simple separation. Social, 

demographic, and geographic factors may influence the potential for interaction. Methods to 

incorporate this information into the contact model, especially tailored to local geographic 

regions, would provide an enhanced simulation capability. 
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In the context of the simulation, the contact model basically reflects the interaction 

between individuals or groups of individuals.  These interactions generally do not occur 

uniformly in all directions. Some groups of individuals are more likely to interact with other 

groups of individuals.  Researchers in several fields have begun to use network representations to 

model processes that propagate among groups of people along specific paths connecting the 

groups (for instance, see Newman [2002] and Meyers, et al., [2003]). In this representation, 

individuals or groups of individuals are represented as nodes. Interacting nodes are connected by 

paths, which usually have an associated probability that information is transferred or contacts 

occur along the path. 

In a network-based approach, paths are defined to connect groups, and probabilities of 

movement along the paths are assigned.  Some groups may be connected, while others may not. 

Some paths may have high movement, and others low.  The network connections and 

probabilities are defined using some source of information.  For instance, a network model for 

disease transmission in a hospital could potentially be deduced from a survey of the staff that 

described their movements in the hospital.  For a population spread over a large geographic area, 

a method of defining the network model is not obvious. 

Many researchers have studied the mathematics of processes operating on networks, but 

there does not seem to be a lot of work related to deriving the network. A possible solution is to 

use social, demographic, and geographic data contained in a GIS to define network connections 

between population centers.  In our existing simulation, this approach, in principle, could weight 

interactions between groups based on GIS information.  Specifically, the distance-based contact 

probability would be replaced by a function that reflects factors calculated using GIS databases. 

The current simulation, even with a limited contact model, can simulate an outbreak of 

different contact-related diseases by changing the transmission parameters.  Network information 

can be used to modify the probability of contact function.  A network approach could provide a 

method of modeling other disease vectors.  For waterborne disease, hydrologic information 

contained in a GIS could be used to develop a network model that connects communities along a 

watercourse.  For an animal borne disease, natural resources and wildlife data contained in a GIS 

could be used to develop a network model that connects populations of animals and/or people 

associated with the animal group. 
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A similar approach may be applicable to developing a network model for our simulation.  

A road network could be used to provide an alternative estimate of the connectivity between 

individuals, and that estimate could be used in the contact model instead of the straight-line 

distance between points.  For example, two individuals could be one mile apart in terms of 

straight-line distance, but could be connected by a long and curved road with a 35 mph speed 

limit.  Another set of individuals might be 1.5-miles apart in terms of straight line distance, but 

could have a four-lane highway with a 65 mph speed limit directly connecting them.  The second 

set of individuals, despite being further apart “as the crow flies,” would be considered closer 

together when estimating connectivity using a road network.

To evaluate this potential for developing an alternative index of connectivity between 

individuals, we used the ESRI StreetMap 2000 GIS data collection of U.S. roads included in the 

Desktop ArcGIS 9.1 data collection along with ArcGIS Network Analyst 9.1 as our primary GIS 

tools.  We created 15 example point locations in Ann Arbor, Michigan, to serve as our point 

locations for simulated disease cases, and calculated the straight-line distance and travel times 

(with Network Analyst) for each of those points to a central location, which could be considered 

the disease origin.  The 15 points were assigned a unique ID, the straight-line distance in 

kilometers and the travel time in minutes were calculated in ArcGIS for each point to the origin 

point, and the rank orders were calculated for distance versus travel time.  To assess difference 

that using road-based connectivity might have, we were looking for cases where points were 

close to the origin point in distance and far away in travel time, or vice versa.  Table 1 shows the 

15 points with their calculated attribute values ordered by length of travel time, and Figure 5 

shows the 15 points and the road networks used to calculate the travel time with Network 

Analyst.   Points 2 and 7, along with points 6 and 14, form two sets of interesting examples for 

considering connectivity.  Points 2 and 7, highlighted in yellow in Table 1 and Figure 5, are in 

eighth and tenth place in terms of straight-line distance, but are fifth and sixth in terms of travel 

time, while points 6 and 14 (highlighted in green) are fourth and fifth in straight-line distance but 

are ninth and tenth in travel time.  The yellow points are “far away” in straight-line distance but 

close in travel time, while the green points are “nearby” in straight-line distance but “far” in 

travel time.  A closer inspection of the underlying StreetMap road network reveals that the 

yellow points have a direct, major road connecting them to the central location, while the green 

points have meandering neighborhood streets with slower speed limits connecting them to the 
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central location.  In terms of the original contact network, the green points would have been 

considered more closely connected to the origin point and more likely to receive a disease 

transmission.  With our new travel-time based index of connectivity, the yellow points would 

now be more connected than the green points to the origin point, and would have an increased 

probability for disease transmission. 

Table 1:  Rank order list of 15 example points for straight-line distance versus travel time. 

POINT 
UNIQUE ID

STRAIGHT-
LINE 
DISTANCE 
in KM

ORDER 
BASED ON 
DISTANCE

TRAVEL TIME 
IN MINUTES

ORDER 
BASED ON 
TRAVEL 
TIME NOTE

11 2.27 1 3.66 1
8 2.56 2 3.96 2
5 3.56 6 5.02 3
3 3.07 3 5.24 4
2 3.62 8 5.32 5 "Far" away in straight-line distance but close in travel time
7 3.93 10 5.48 6 "Far" away in straight-line distance but close in travel time
1 3.59 7 5.74 7

10 3.81 9 6.09 8
14 3.20 4 6.28 9 "Nearby" in straight-line distance but far in travel time
6 3.33 5 6.66 10 "Nearby" in straight-line distance but far in travel time

12 3.96 11 6.68 11
13 4.18 13 7.20 12
15 3.99 12 7.27 13
9 4.90 15 7.84 14
4 4.84 14 8.14 15
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Figure 5:  Comparison of drive time to straight-line distance for 15 example points. 

The description of the 15 points serves as an example of alternative ways of calculating 

distance, and would need to be scaled up and modified to be more directly applicable to disease 

modeling.  For example, the thousands of points evaluated in the GIS outbreak tool could have 

their travel times calculated to a suspected origin point to see which ones were most closely 

connected.  Instead of specific locations representing individuals cases, the disease locations 

could be cities connected by highways, and the degree of connectivity of uninfected cities to a 

city with an outbreak could be calculated to see how likely the cities are to become infected.  

Cities could have their index of connectivity based on additional parameters, such as the number 

of people commuting from one city to another.  U.S. Census tract to census tract commuting data 

are available in the Census 2000 Special Tabulation document STP-64, “Census Tract of Work 

by Census Tract of Residence.”  The GIS layer providing the thread of connectivity would not 

necessarily have to be comprised of roads.  For the waterborne disease idea mentioned earlier, 

the connection layer could be a river system, and the points could be cities along the river, with 
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the connectivity being estimated for various cities downstream.  Another waterborne example 

could be for a water distribution system for a local water utility, and the points could be houses 

connected by the water lines.  The index of connectivity could be calculated by water line length 

and pipe capacity.

4.  Conclusion 

Public health agencies are increasingly interested in making effective use of reported 

disease data and developing improved surveillance for detection and a better understanding of 

disease outbreak patterns.  Two GIS-related methods of achieving these goals were presented.

First, an ArcObjects-based tool was developed for visualizing and monitoring disease outbreaks 

using information that is available in newly-developed electronic disease surveillance databases 

within public health departments.  This provides the ability for public health agencies to 

understand the geo-temporal nature of outbreaks in near real-time.  The resulting tool has been 

demonstrated using both simulated and actual disease outbreak data.  Second, a disease 

propagation simulation based on contact networks was developed using ArcObjects and 

MATLAB-based programming.  One of the more time-consuming tasks in developing a contact-

based simulation is to define the underlying contact network.  A method of inferring contact 

networks from GIS data would make the development of these simulations more efficient and 

allow them to be rapidly adjusted to specific geographic areas.  An example of generating 

alternative connectivity indices based on travel times was analyzed and discussed. 
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