Implementing Geodatabases with Data Models #1030
The CADD/BIM Technology Center
https://cadbim.usace.army.mil/

Nancy Towne (601) 634-3181
Nancy.A.Towne@erdc.usace.army.mil
Implementing geodatabases with data models requires processes and procedures that describe the transformation of the required data structure to a managed model-driven architecture of a logical data model, the transformation of the model to an implementation, and the migration of legacy schemas to compliant required implementations. The model should be specified and the initial transformation from an implementation-based standard to a model-based standard should be explained along with the methodology for producing implementations from the model, and the methodology for migrating legacy systems to the required compliant implementation. These explanations should contain algorithms to perform these operations to provide software developers an initial approach to developing and modifying a data model toolset.
Goal

Develop processes and procedures to describe:

- the transformation of the required data structure to a managed model-driven architecture of a logical data model
- the transformation of the model to an implementation
- the migration of legacy schemas to compliant required implementations.
Objectives

- Produce object and data models
- Develop detailed explanation of the initial transformation from an implementation-based standard to a model-based standard
- Develop algorithms to provide developers an initial approach to developing and modifying a data model toolset
- Document methodology for producing implementations from the model and for migrating legacy systems to the required compliant implementation
Data Structure

Vendor-neutral Hierarchy

- Theme
  - Category
    - Class
      - Table

Implementation

Utilities; Hydrography
Component, Resource, Facilities, Management
Objects, Attributes, Behaviors
Database Tables

User Database

Implementing Geodatabases
Class Objects, Attributes, Behaviors

**Classes**

- **Class**: UT_Valve
  - Subclasses: UG_Valve, UP_Valve

- **Association**: 1..n

**Customization Tools**
- UT_ValvePipe

**Implementation Tools**
- UT_Pipe

**Objects**
- Valve
- Valve
- Table rows

*Jun 2007 Implementing Geodatabases*
Approach

- Define modeling process
- Perform analysis of attributes
- Establish initial Policy for modeling
- Define rules to automate for conversion algorithms
- Develop applications to migrate data
Modeling Process

- Reverse-engineer current data into a data model
- Manually generate a root class called DataObject
- Analysis:
  - abstract classes of “most used attributes”
  - new classes based on common attributes (same table; many features)
  - associations between classes (relationships defined)
  - identify keys (primary & foreign)
## Attribute Analysis

<table>
<thead>
<tr>
<th>Object Model</th>
<th>Data Model</th>
<th>User Data Model</th>
<th>Implementation Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class</td>
<td>Table</td>
<td>Table</td>
<td>Table</td>
</tr>
<tr>
<td>Boat_ramp</td>
<td>Boat_ramp</td>
<td>Boat_ramp_area</td>
<td>Boat_ramp_area</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Boat_ramp_line</td>
<td>Boat_ramp_line</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Boat_ramp_point</td>
<td>Boat_ramp_point</td>
</tr>
<tr>
<td>Current data</td>
<td>Inherited attributes and relations</td>
<td>User-defined augmentation</td>
<td>GIS COTS software</td>
</tr>
<tr>
<td></td>
<td>Filter</td>
<td>Geometry assigned</td>
<td></td>
</tr>
</tbody>
</table>

Jun 2007 Implementing Geodatabases
Initial Policy

• Data organization rules:
  – A DataObject root class is required
  – Abstract classes may be defined for common attributes
  – Establish current features & definitions will be utilized
  – All current components will be modeled (if it has a home today, it will have a home tomorrow)

• Feature organization rules:
  – Allow features to have “any” geometry
  – Every feature must have a name & description
  – Every feature will inherit different attributes according to its geometry

• Non-graphic organization rules:
  – Create Common Nongraphic Class consisting of the contents of the current common nongraphic metadata
- Define naming conventions & OGC changes mechanism
- Create productivity tools to continue the comparative analysis
  - Rational Rose scripts
  - Export SQL scripts
  - Custom data types
  - Naming conventions
- Test tools on Data Model & refine methodology/tools
- Prioritize remaining data classes
- Define format of behaviors
- Define actual behaviors (3” pipe to 1” valve)
- Create tools which use this format to populate database behavior
Issues

- Determine how or if on incorporation of BIM into Object Model
- Topology (geometry, coordinates, etc.)
- Temporal (approach and impact on facilities data)
- Ability of GIS vendors to implement object models
- Object Data Model maintenance
- Disseminate object approach and efforts to current users
Migrating Data from a known source into the new model requires a consideration of the following:

- Geometry Constraints
- Projection Constraints
- Field/Attribute Constraints
- Value Constraints (Field to Field)
- Value Constraints (Value to Value)
- Constants
- Metadata
Concept – Migrating data

Develop a computer application that will automate the loading of a Geodatabase with Source Data from a variety of formats (Coverage, Shape File, etc) and a variety of structures (the contained fields) into a Data compliant Geodatabase in either Personal or SDE format, considering the constraints of geometry, projection, fields, values, and constants.