ArcIMS in Conjunction with Oracle Expedites Decisions in Environmental Investigations

Linda Hughes, GISP
D. Randal Holtzclaw
Shaw Environmental & Infrastructure
Abstract

During an environmental investigation, a number of samples were to be collected using direct push equipment and analyzed immediately at an on-site laboratory. Using ArcIMS in conjunction with an Oracle database, the resulting data were displayed in "near real-time", symbolizing sample locations based on analytes detected within a particular analyte group. This presentation of data allowed the entire project team to view the sampling results spatially, via the internet, and to plan the next round of sampling locations within hours of the receipt of laboratory data. Prior to the development of this procedure, an effort such as this would have been prolonged by days or even weeks. Using this method, decisions could be made and implemented daily, demonstrating a cost savings of thousands of dollars.
Task Overview

• Phase I Sampling Event
• Groundwater sample locations:
 – 6/day on first sweep (analytical data < 24 hr turn)
 – Minimum 2 samples per location (1-Duplin aquifer, 1-
 Upper Black Creek aquifer)
 – Second sweep – 1 sample/boring on 24 hr turn
• Groundwater samples are analyzed for full suite of VOCs (volatile organic compounds)
• Primary contaminants of concern:
 – Chlorinated Solvents
 • TRICHLOROETHENE
 • 1,1-DICHLOROETHANE
Needs Assessment

• Spatial display of analytical results immediately upon receipt of laboratory data.
• Tabular reports of analytical data (all, or hits only, to include basic data fields, including analytical result)
• Users will consist of internal Shaw project team as well as external users (client, contracting partners, etc.)
Needs Assessment
Spatial Display of Analytical Data

- Data loaded into Shaw’s Oracle system upon receipt.
- Functionality developed to group by the 4 chlorinated solvent compounds of concern.
- Data access limited to this particular area of concern.
- SQL scripts developed to incorporate appropriate symbolization, grouping by compound and by aquifer (sampling zone).
CREATE OR REPLACE PROCEDURE IMS_SUMMARY (output_set_in NUMBER, output_category_in VARCHAR2, option_id_in NUMBER, uid_in VARCHAR2, session_id VARCHAR2) AS
BEGIN
UPDATE IMS_DETAIL_DATA TP
SET LIMIT_MCL = (SELECT DISTINCT UPPER_LIMIT
FROM PROJ_LIMIT PL
WHERE PL.CASNO = TP.CASNO
AND LIMIT_NAME = 'MCLs');
UPDATE IMS_DETAIL_DATA TP
SET LIMIT_PRG = (SELECT DISTINCT UPPER_LIMIT
FROM PROJ_LIMIT PL
WHERE PL.CASNO = TP.CASNO
AND LIMIT_NAME = '2002 SOIL RES PRG');
commit;
UPDATE IMS_DETAIL_DATA TP
SET MEDIA = decode(sample_type,'GW', 'WATER', 'SS', 'SOIL', 'DS', 'SOIL', 'SO', 'SOIL', 'UNK');
UPDATE IMS_DETAIL_DATA TP
SET ZONE = sample_type
where sample_type in ('SS','DS','SO');

UPDATE IMS_DETAIL_DATA TP
SET ZONE = 'UNK'
where sample_type NOT in ('SS','DS','SO','GW')
AND ZONE IS NULL;

UPDATE IMS_DETAIL_DATA TP
SET ZONE = FIELD_BATCH_NO
WHERE SAMPLE_TYPE = 'GW'
AND ZONE IS NULL
AND FIELD_BATCH_NO IS NOT NULL;

UPDATE IMS_DETAIL_DATA TP
SET ZONE = 'WT2/U'
WHERE ZONE IS NULL
AND SAMPLE_TYPE = 'GW'
AND TO_NUMBER(END_DEPTH) < '41';

UPDATE IMS_DETAIL_DATA TP
SET ZONE = 'WT2/L'
WHERE ZONE IS NULL
AND SAMPLE_TYPE = 'GW'
AND TO_NUMBER(END_DEPTH) BETWEEN '41' AND '66';

UPDATE IMS_DETAIL_DATA TP
SET ZONE = 'SDL'
WHERE ZONE IS NULL
Needs Assessment
Spatial Display of Analytical Data (continued)

• Layer 1: All planned locations and locations sampled to date
• Layer 2 and 3: (Groundwater sampling results for each aquifer)
 – Any of 4 chlorinated solvents are detected above MCLs to be symbolized in red
 – Any of 4 chlorinated solvents are detected to be symbolized in orange
 – Any VOCs detected to be symbolized in yellow
Needs Assessment
Spatial Display of Analytical Data (continued)

Layer 2: (Soil sampling results)
– Any of 4 chlorinated solvents are detected above PRGs to be symbolized in red
– Any of 4 chlorinated solvents are detected to be symbolized in orange
– Any VOCs detected to be symbolized in yellow
Needs Assessment
Spatial Display of Analytical Data (continued)

Additional layers:
- Site aerial photography (10 rasters to reflect change over time and assist in identification of contaminant source(s))
- Potientometric surface contours
- Vector basemap layers
 - Roads
 - Streams
 - Base boundary
 - Restoration program site boundaries
Needs Assessment
Tabular Reports

• Identify tool on IMS site provides report generation.
• Ability to open in Excel
• Records are highlighted in same color conventions as map symbols.
Needs Assessment

User Access

• IMS site is hosted on server in the DMZ to allow for external user access.

• Appropriate security measures are incorporated.
IMS/Oracle connection

- Current strategy based on SDE and SQL Server
- Legacy Oracle-based ShawView Environmental Database using Stored Procedures and COM+ components to process data

- Oracle + Shapefiles = No direct connection. Query results extracted to dBase files
HTML and Java Script Code

- HTML Viewer TOC.HTM was modified to present Compound and Sampling Zone dropdowns:
• `aimsCustom.js` was modified to inject `SpatialQuery AXL` during render event for performing on-the-fly symbology and joins to previously extracted Oracle data:
IMS Viewer
IMS Viewer

Legend
Groundwater Sample Locations

- 1 or more Chlorinated Solvents Exceed MCL
- 1 or more Chlorinated Solvents Detected
- 1 or more VOCs Detected
- No VOCs Detected
- Restoration Program Sites
- Roads Off Base
- Roads On Base
- Streams
- Buildings
- Shaw AFB Boundary
- 2005 Air Photo
IMS Viewer
<table>
<thead>
<tr>
<th>Location</th>
<th>Type</th>
<th>Zone</th>
<th>Date</th>
<th>Depth</th>
<th>Parameter</th>
<th>Result</th>
<th>Qualifier</th>
<th>Units</th>
<th>Limit MCL</th>
<th>Limit Prg</th>
<th>North</th>
<th>East</th>
</tr>
</thead>
<tbody>
<tr>
<td>AOCNPT-9</td>
<td>GW</td>
<td>BC/U</td>
<td>HYPN 2/9/07 REG</td>
<td>103</td>
<td>105.5</td>
<td>235.5</td>
<td>5265</td>
<td>1,1,1,2-TETRACHLOROETHANE</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>N</td>
</tr>
<tr>
<td>AOCNPT-9</td>
<td>GW</td>
<td>BC/U</td>
<td>HYPN 2/9/07 REG</td>
<td>75</td>
<td>77.5</td>
<td>235.5</td>
<td>5265</td>
<td>1,1,1,2-TETRACHLOROETHANE</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>N</td>
</tr>
<tr>
<td>AOCNPT-9</td>
<td>GW</td>
<td>BC/U</td>
<td>HYPN 2/9/07 REG</td>
<td>103</td>
<td>105.5</td>
<td>235.5</td>
<td>5265</td>
<td>1,1,1-TRICHLOROETHANE</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>N</td>
</tr>
<tr>
<td>AOCNPT-9</td>
<td>GW</td>
<td>BC/U</td>
<td>HYPN 2/9/07 REG</td>
<td>75</td>
<td>77.5</td>
<td>235.5</td>
<td>5265</td>
<td>1,1,1-TRICHLOROETHANE</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>N</td>
</tr>
<tr>
<td>AOCNPT-9</td>
<td>GW</td>
<td>BC/U</td>
<td>HYPN 2/9/07 REG</td>
<td>103</td>
<td>105.5</td>
<td>235.5</td>
<td>5265</td>
<td>1,1,1,1,2-TETRACHLOROETHANE</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>N</td>
</tr>
<tr>
<td>AOCNPT-9</td>
<td>GW</td>
<td>BC/U</td>
<td>HYPN 2/9/07 REG</td>
<td>75</td>
<td>77.5</td>
<td>235.5</td>
<td>5265</td>
<td>1,1,1,2,2-TETRACHLOROETHANE</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>N</td>
</tr>
<tr>
<td>AOCNPT-9</td>
<td>GW</td>
<td>BC/U</td>
<td>HYPN 2/9/07 REG</td>
<td>103</td>
<td>105.5</td>
<td>235.5</td>
<td>5265</td>
<td>1,1,2,2-TETRACHLOROETHANE</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>N</td>
</tr>
<tr>
<td>AOCNPT-9</td>
<td>GW</td>
<td>BC/U</td>
<td>HYPN 2/9/07 REG</td>
<td>75</td>
<td>77.5</td>
<td>235.5</td>
<td>5265</td>
<td>1,1,2,2-TETRACHLOROETHANE</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>N</td>
</tr>
<tr>
<td>AOCNPT-9</td>
<td>GW</td>
<td>BC/U</td>
<td>HYPN 2/9/07 REG</td>
<td>103</td>
<td>105.5</td>
<td>235.5</td>
<td>5265</td>
<td>1,1,2-TRICHLOROETHANE</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>N</td>
</tr>
<tr>
<td>AOCNPT-9</td>
<td>GW</td>
<td>BC/U</td>
<td>HYPN 2/9/07 REG</td>
<td>75</td>
<td>77.5</td>
<td>235.5</td>
<td>5265</td>
<td>1,1,2-TRICHLOROETHANE</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>N</td>
</tr>
<tr>
<td>AOCNPT-9</td>
<td>GW</td>
<td>BC/U</td>
<td>HYPN 2/9/07 REG</td>
<td>103</td>
<td>105.5</td>
<td>235.5</td>
<td>5265</td>
<td>1,1,2-TRICHLOROETHANE</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>N</td>
</tr>
<tr>
<td>AOCNPT-9</td>
<td>GW</td>
<td>BC/U</td>
<td>HYPN 2/9/07 REG</td>
<td>75</td>
<td>77.5</td>
<td>235.5</td>
<td>5265</td>
<td>1,1,2-TRICHLOROETHANE</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>N</td>
</tr>
<tr>
<td>AOCNPT-9</td>
<td>GW</td>
<td>BC/U</td>
<td>HYPN 2/9/07 REG</td>
<td>103</td>
<td>105.5</td>
<td>235.5</td>
<td>5265</td>
<td>1,1-DICHLOOROETHANE</td>
<td>1.17</td>
<td>U</td>
<td>ug/L</td>
<td>Y</td>
</tr>
<tr>
<td>AOCNPT-9</td>
<td>GW</td>
<td>BC/U</td>
<td>HYPN 2/9/07 REG</td>
<td>75</td>
<td>77.5</td>
<td>235.5</td>
<td>5265</td>
<td>1,1-DICHLOOROETHANE</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>N</td>
</tr>
<tr>
<td>AOCNPT-9</td>
<td>GW</td>
<td>BC/U</td>
<td>HYPN 2/9/07 REG</td>
<td>103</td>
<td>105.5</td>
<td>235.5</td>
<td>5265</td>
<td>1,1-DICHLOOROETHANE</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>N</td>
</tr>
<tr>
<td>AOCNPT-9</td>
<td>GW</td>
<td>BC/U</td>
<td>HYPN 2/9/07 REG</td>
<td>75</td>
<td>77.5</td>
<td>235.5</td>
<td>5265</td>
<td>1,1-DICHLOOROETHANE</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>N</td>
</tr>
<tr>
<td>AOCNPT-9</td>
<td>GW</td>
<td>BC/U</td>
<td>HYPN 2/9/07 REG</td>
<td>103</td>
<td>105.5</td>
<td>235.5</td>
<td>5265</td>
<td>1,1-DICHLOOROETHANE</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>N</td>
</tr>
<tr>
<td>AOCNPT-9</td>
<td>GW</td>
<td>BC/U</td>
<td>HYPN 2/9/07 REG</td>
<td>75</td>
<td>77.5</td>
<td>235.5</td>
<td>5265</td>
<td>1,1-DICHLOOROETHANE</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>N</td>
</tr>
<tr>
<td>AOCNPT-9</td>
<td>GW</td>
<td>BC/U</td>
<td>HYPN 2/9/07 REG</td>
<td>103</td>
<td>105.5</td>
<td>235.5</td>
<td>5265</td>
<td>1,1-DICHLOOROETHANE</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>N</td>
</tr>
<tr>
<td>AOCNPT-9</td>
<td>GW</td>
<td>BC/U</td>
<td>HYPN 2/9/07 REG</td>
<td>75</td>
<td>77.5</td>
<td>235.5</td>
<td>5265</td>
<td>1,1-DICHLOOROETHANE</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>N</td>
</tr>
<tr>
<td>Site</td>
<td>Date</td>
<td>Time</td>
<td>PM10</td>
<td>PM25</td>
<td>Particulate Matter</td>
<td>CO</td>
<td>SO2</td>
<td>NO2</td>
<td>O3</td>
<td>Other</td>
<td>Temp</td>
<td>Humidity</td>
</tr>
<tr>
<td>--------</td>
<td>------------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------------------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>------</td>
<td>----------</td>
</tr>
<tr>
<td>AOCNWP-15</td>
<td>11/19/2006</td>
<td>REG</td>
<td>142.5</td>
<td>142.5</td>
<td>251.8037</td>
<td>TOLUENE</td>
<td>1</td>
<td>ug/L</td>
<td>N</td>
<td>1000</td>
<td>65.6015044</td>
<td>782252.908</td>
</tr>
<tr>
<td>AOCNWP-15</td>
<td>11/13/2006</td>
<td>REG</td>
<td>53.1</td>
<td>53.1</td>
<td>251.8037</td>
<td>TRICHLOROETHENE</td>
<td>1</td>
<td>ug/L</td>
<td>N</td>
<td>5</td>
<td>0.052983333</td>
<td>782252.908</td>
</tr>
<tr>
<td>AOCNWP-15</td>
<td>11/13/2006</td>
<td>REG</td>
<td>42.9</td>
<td>42.9</td>
<td>251.8037</td>
<td>TRICHLOROETHENE</td>
<td>1</td>
<td>ug/L</td>
<td>N</td>
<td>5</td>
<td>0.052983333</td>
<td>782252.908</td>
</tr>
<tr>
<td>AOCNWP-15</td>
<td>11/13/2006</td>
<td>REG</td>
<td>53.1</td>
<td>53.1</td>
<td>251.8037</td>
<td>TRICHLOROETHENE</td>
<td>1</td>
<td>ug/L</td>
<td>N</td>
<td>5</td>
<td>0.052983333</td>
<td>782252.908</td>
</tr>
<tr>
<td>AOCNWP-15</td>
<td>11/14/2006</td>
<td>REG</td>
<td>62.4</td>
<td>62.4</td>
<td>251.8037</td>
<td>TRICHLOROETHENE</td>
<td>1</td>
<td>ug/L</td>
<td>N</td>
<td>5</td>
<td>0.052983333</td>
<td>782252.908</td>
</tr>
<tr>
<td>AOCNWP-15</td>
<td>11/16/2006</td>
<td>REG</td>
<td>112.12</td>
<td>112.12</td>
<td>251.8037</td>
<td>TRICHLOROETHENE</td>
<td>1</td>
<td>ug/L</td>
<td>N</td>
<td>5</td>
<td>0.052983333</td>
<td>782252.908</td>
</tr>
<tr>
<td>AOCNWP-15</td>
<td>11/16/2006</td>
<td>REG</td>
<td>89.61</td>
<td>89.61</td>
<td>251.8037</td>
<td>TRICHLOROETHENE</td>
<td>1</td>
<td>ug/L</td>
<td>N</td>
<td>5</td>
<td>0.052983333</td>
<td>782252.908</td>
</tr>
<tr>
<td>AOCNWP-15</td>
<td>11/16/2006</td>
<td>REG</td>
<td>94.66</td>
<td>94.66</td>
<td>251.8037</td>
<td>TRICHLOROETHENE</td>
<td>1</td>
<td>ug/L</td>
<td>N</td>
<td>5</td>
<td>0.052983333</td>
<td>782252.908</td>
</tr>
<tr>
<td>AOCNWP-15</td>
<td>11/16/2006</td>
<td>REG</td>
<td>100.93</td>
<td>100.93</td>
<td>251.8037</td>
<td>TRICHLOROETHENE</td>
<td>1</td>
<td>ug/L</td>
<td>N</td>
<td>5</td>
<td>0.052983333</td>
<td>782252.908</td>
</tr>
<tr>
<td>AOCNWP-15</td>
<td>11/16/2006</td>
<td>REG</td>
<td>105.6</td>
<td>105.6</td>
<td>251.8037</td>
<td>TRICHLOROETHENE</td>
<td>1</td>
<td>ug/L</td>
<td>N</td>
<td>5</td>
<td>0.052983333</td>
<td>782252.908</td>
</tr>
<tr>
<td>AOCNWP-15</td>
<td>11/17/2006</td>
<td>REG</td>
<td>172.5</td>
<td>172.5</td>
<td>251.8037</td>
<td>TRICHLOROETHENE</td>
<td>1</td>
<td>ug/L</td>
<td>N</td>
<td>5</td>
<td>0.052983333</td>
<td>782252.908</td>
</tr>
<tr>
<td>AOCNWP-15</td>
<td>11/18/2006</td>
<td>REG</td>
<td>132.5</td>
<td>132.5</td>
<td>251.8037</td>
<td>TRICHLOROETHENE</td>
<td>1</td>
<td>ug/L</td>
<td>N</td>
<td>5</td>
<td>0.052983333</td>
<td>782252.908</td>
</tr>
<tr>
<td>AOCNWP-15</td>
<td>11/18/2006</td>
<td>REG</td>
<td>142.5</td>
<td>142.5</td>
<td>251.8037</td>
<td>VINYL CHLORIDE</td>
<td>2</td>
<td>ug/L</td>
<td>N</td>
<td>2</td>
<td>0.079067778</td>
<td>782252.908</td>
</tr>
<tr>
<td>AOCNWP-15</td>
<td>11/13/2006</td>
<td>REG</td>
<td>53.1</td>
<td>53.1</td>
<td>251.8037</td>
<td>VINYL CHLORIDE</td>
<td>2</td>
<td>ug/L</td>
<td>N</td>
<td>2</td>
<td>0.079067778</td>
<td>782252.908</td>
</tr>
<tr>
<td>AOCNWP-15</td>
<td>11/13/2006</td>
<td>REG</td>
<td>42.9</td>
<td>42.9</td>
<td>251.8037</td>
<td>VINYL CHLORIDE</td>
<td>2</td>
<td>ug/L</td>
<td>N</td>
<td>2</td>
<td>0.079067778</td>
<td>782252.908</td>
</tr>
<tr>
<td>AOCNWP-15</td>
<td>11/13/2006</td>
<td>REG</td>
<td>53.1</td>
<td>53.1</td>
<td>251.8037</td>
<td>VINYL CHLORIDE</td>
<td>2</td>
<td>ug/L</td>
<td>N</td>
<td>2</td>
<td>0.079067778</td>
<td>782252.908</td>
</tr>
<tr>
<td>AOCNWP-15</td>
<td>11/14/2006</td>
<td>REG</td>
<td>62.4</td>
<td>62.4</td>
<td>251.8037</td>
<td>VINYL CHLORIDE</td>
<td>2</td>
<td>ug/L</td>
<td>N</td>
<td>2</td>
<td>0.079067778</td>
<td>782252.908</td>
</tr>
<tr>
<td>AOCNWP-15</td>
<td>11/16/2006</td>
<td>REG</td>
<td>112.12</td>
<td>112.12</td>
<td>251.8037</td>
<td>VINYL CHLORIDE</td>
<td>2</td>
<td>ug/L</td>
<td>N</td>
<td>2</td>
<td>0.079067778</td>
<td>782252.908</td>
</tr>
</tbody>
</table>
Tabular Report
Excel
Updates

• New layers added and updated as “step-outs” are planned.
 – Allows for team review and final decisions to be made.
Step-Outs
(Proposed Sampling Locations)
Step-Outs with Potenienometric Surface Contours
Acknowledgments

Jonathan Shireman, Hydrogeologist
Shaw Environmental & Infrastructure

Randal Rogers, Project Manager
Shaw Environmental & Infrastructure

Kurt Schmidt, Data Manager
Shaw Environmental & Infrastructure

Eric Haseltine, Data Manager
Shaw Environmental & Infrastructure

Sharon Pennington, Project Chemist
Shaw Environmental & Infrastructure
Author Information

Linda Hughes, GISP, Senior GIS Analyst
865.694.7489
Linda.hughes@shawgrp.com

Co-author:
D. Randal Holtzclaw, Senior GIS Analyst
865.694.9999
randal.holtzclaw@shawgrp.com

Shaw Environmental & Infrastructure
312 Directors Drive
Knoxville, TN 37923