GPS & GIS
for
Hurricane Debris Removal

City of Miami
Miami, Florida

June 19, 2007
City of Miami, FL

- Location: Miami-Dade County, Florida
- Incorporated: July 28, 1896
- Population:
 - 2000: 362,470
 - 2019 (projected): 390,191
- Area: 35 Square Miles
- Climate: Subtropical
- Elevation: 12 Feet above Sea Level
- Temperature:
 - Annual Average: 75.9°
 - Average January: 67.2°
 - Average July: 82.6°
Hurricanes 2005

- **Katrina**
 - 8.25.05
 - Tropical Storm => Hurricane Level 1

- **Rita**
 - 9.20.05
 - Tropical Storm => Hurricane Level 1

- **Wilma**
 - 10.24.05
 - Hurricane Level 3
City Needs

- Assessment of tree damage caused by Hurricane Wilma
- Method to help monitor and coordinate tree debris collection
- Documentation of damage and debris removal for clean-up reimbursement by FEMA
Solution

- Collecting tree debris data using mobile GIS (Tree Debris Inventory)
- Compiling a comprehensive citywide tree debris database (Database Processing)
- Creating maps and reports visualizing and detailing tree debris information (Maps and Reports)
Tree Debris Inventory

- Trained 4 two-person field crews on inventory methodology and mobile GIS

- Crews equipped with laptop, GPS device, and digital camera

- Inventory consisted of field data collection, followed by nightly database synchronization
Tree Debris Inventory

• Developed ArcPad data entry forms to be used by the field crews

• Forms designed to collect information on:
 - Debris type (fallen tree, tree limb, property damage)
 - Trunk diameter; limb diameter/length (important for FEMA Eligibility)
 - Location address
 - Location coordinates (lat/long)
 - Photo ID
Tree Debris Inventory
Tree Debris Inventory

- Set up GIS database to be used by field crews

- Data derived from the Miami database includes:
 - City and district boundaries
 - Garbage collection zones
 - Street and address data
 - City-owned parks
 - Water features
 - Aerial imagery
Tree Debris Inventory
Tree Debris Inventory Results

- **Fallen Trees**
 - Citywide (in road right-of-way) 0760
 - Parks 0340
 - Total 1100

- **Trees with Hanging Limbs**
 - Citywide (in road right-of-way) 6166
 - Parks 0653
 - Total 6819

- **Property Damage**
 - Citywide (in road right-of-way) 87
 - Parks 05
 - Total 92
Database Processing

- Office staff managed master GIS database, workflow included:
 - merging individual uploads into one comprehensive debris database
 - Address matching (performing spatial join)
 - Checking for potential duplicate records
 - Picture matching
 - Screening of records for FEMA Eligibility
 - Screening of comments for additional information
 - Calculating lat/long coordinates
 - General QA/QC
Generating and maintaining comprehensive tree debris database
Maps and Reports

• Generated maps for individual City zones and districts detailing fallen trees, broken limbs and property damage

• Generated a series of Access™ reports detailing debris locations with corresponding attributes and photos
Maps and Reports

CITY OF MIAMI

Citywide Fallen Tree and Property Damage
District 1
Commissioner: Angel Gonzalez

Hurricane Wilma Debris Management

Legend
- Green Diamond: Fallen Tree
- Orange Circle: Property Damage
- Gray Lines: Federal / State / County Roads
- Dark Gray Lines: Streets
- Light Blue: District 1

Districts City of Miami Overview

HDR
Maps and Reports

City of Miami

Hurricane Wilma Debris Recovery

Fallen Tree Stump and Hanging Limbs Removal

FEMA No. 1605-DR, Florida

Report for Collection Zone: 111

<table>
<thead>
<tr>
<th>Map ID</th>
<th>FEMA Eligible</th>
<th>Collection Zone</th>
<th>Date</th>
<th>Tree on Power Lines</th>
<th>Stump Diameter (inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Y:</td>
<td>26.8703214118</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Tree on Power Lines:</td>
<td>48</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Y:</td>
<td>25.8096200586</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Tree on Power Lines:</td>
<td>48</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Y:</td>
<td>26.86012941790</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Tree on Power Lines:</td>
<td>36</td>
</tr>
</tbody>
</table>

Comments:

- **FALLEN TREE**
 - **3-4 FEET DIAMETER FALLEN**
 - **DUE TO TREE / PLUS LINING**

 Address:

 2405 NW 13TH CT

 MIAMI, FL 33142

 Picture: Picture01.jpg

- **FALLEN TREE**
 - **BIG FALLEN TREE BLOCKING SIDEWALK / 4 FEET DIAMETER**

 Address:

 1181 HICKS CAYNE BLVD

 MIAMI, FL 33140

 Picture: Picture02.jpg

- **FALLEN TREE**
 - **FALLEN TREE / DIAM 3 FEET**
 - **PROPERTY DAMAGE / TREE RESTING OVER A FENCE, AND BLOCKING PUBLIC SIDEWALK**

 Address:

 2415 NW 8TH AVE

 MIAMI, FL 33127

 Picture: Picture03.jpg
Benefits

• Database helping the City:
 - Verifying reports from calling residents about tree debris
 - Updating existing tree inventory

• Reports and maps resulted in cost savings for the City by:
 - Serving as basis for debris removal contractors
 - Allowing the City to define amount and location of debris removal
 - Limiting the possibility of cost overruns by collecting out of scope debris
Benefits

• Reports and maps provided FEMA field staff with valuable information, facilitating FEMA workload and saving time and money
Lessons Learned

• Extensive training of field crews and standardized collection effort will reduce time and effort of data processing considerably
• Provide field crews with the latest master collection file in order to avoid potential collection of duplicates
• Standardizing and streamlining caption of pictures:
 - Unique picture names
 - No portrait pictures
 - 1st picture showing whole area of damage, 2nd showing a close up
Why GPS?

- Accuracy & Quality Control
 - Positional
 - Attribute
- Data Stakeholders
- Cost Efficient
- City Staff "existing experts"
Division of Forestry conducted a visual assessment of the City of Miami post hurricane damage in February 2006 during a mini-tour.

- 75% of the mature trees showed hurricane damage
- Tree Canopy (National avg.): 20%
- Tree Canopy for the City: 5%

2006 USDA Grant
The City of Miami received a 2006 Urban and Community Forestry Grant from the Florida Dept of Agriculture’s Division of Forestry for $25,000.

- **Hardware** $45,140
- **Software** $4,840
- **Total** $49,980
- **USDA Grant** -$25,000
- **City Match** $24,980
2006 USDA Grant

- 6 Geo XT GPS handheld units
- 4 RICOH Pro G3 Cameras & WI-FI cards
- 1 Contour XL Ric Laser Rangefinder - bluetooth & hardware
- 1 Zephyr Antenna, Pole & hardware
- 1 GPS Analyst Extension (includes ArcPad 7 & GPS Correct software)
- 3 copies of ArcPad 7 software
- 5 copies of Trimble GPS Correct software
Purchase Status

- **In the City procurement process**

- **Currently utilizing the following units borrowed from other Departments:**
 - Geo XM
 - Parks Dept
 - Geo XH
 - IT/GIS Dept
Project Staff

- **GIS Developers**
 - Regina Hagger – Public Works
 - Ruth Dagnan – IT/GIS

- **GIS/CADD Technician**
 - Martin Arteaga – Public Works

- **Parks Naturalists**
 - Juan Fernandez
 - Ernesto Martinez
Field Testing

1/12/06 GPServe, Inc. and
2/21/06 NEI, Inc.

- **Trimble GeoXH handheld with TerraSync software:**
 - Total # of structures collected: 35
 - Fire Hydrants – 4
 - Bus Benches – 3
 - Catch Basins/Inlets – 16 (City)
 - Catch Basins/Inlets – 2 (FDOT)
 - Trees – 10
 - Nature Trail – 1 mile
 - Accuracy:
 - Vertical: from 0.6 feet (8 inch) to 4.5 feet
 - Horizontal: from 0.4 feet to 2.8 feet

- **Trimble ProXRS backpack with Recon and ArcPad 7.0 software:**
 - Total # of structures collected: 27
 - Fire Hydrants – 3
 - Bus Benches – 2
 - City Storm Water Catch Basins/Inlets – 12
 - Trees – 10
Field Testing Results

<table>
<thead>
<tr>
<th>Comment</th>
<th>Max PDOP</th>
<th>Max HDOP</th>
<th>PDOP Type</th>
<th>GPS Type</th>
<th>GPS Date</th>
<th>GPS Time</th>
<th>Update Site</th>
<th>Feature Name</th>
<th>BaseFile</th>
<th>Week</th>
<th>Pos</th>
<th>Filter</th>
<th>Rate File</th>
<th>GPS Week</th>
<th>GPS Second</th>
<th>GPS Height</th>
<th>Ve</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2.0</td>
<td>1.2</td>
<td>Postprocessed</td>
<td>Carrier Float</td>
<td>2001-06-03 11:07:38</td>
<td>New</td>
<td>point</td>
<td>R222111B</td>
<td>2</td>
<td>2</td>
<td>Geostation</td>
<td>1.63</td>
<td>2448020000</td>
<td>0.001</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>1</td>
<td>Geostation</td>
<td>1.63</td>
<td>2448020000</td>
<td>0.001</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>1</td>
<td>Geostation</td>
<td>1.63</td>
<td>2448020000</td>
<td>0.001</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>1</td>
<td>Geostation</td>
<td>1.63</td>
<td>2448020000</td>
<td>0.001</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>1</td>
<td>Geostation</td>
<td>1.63</td>
<td>2448020000</td>
<td>0.001</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>1</td>
<td>Geostation</td>
<td>1.63</td>
<td>2448020000</td>
<td>0.001</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>1</td>
<td>Geostation</td>
<td>1.63</td>
<td>2448020000</td>
<td>0.001</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>1</td>
<td>Geostation</td>
<td>1.63</td>
<td>2448020000</td>
<td>0.001</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>1</td>
<td>Geostation</td>
<td>1.63</td>
<td>2448020000</td>
<td>0.001</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>1</td>
<td>Geostation</td>
<td>1.63</td>
<td>2448020000</td>
<td>0.001</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>1</td>
<td>Geostation</td>
<td>1.63</td>
<td>2448020000</td>
<td>0.001</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td>1</td>
<td>Geostation</td>
<td>1.63</td>
<td>2448020000</td>
<td>0.001</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td>1</td>
<td>Geostation</td>
<td>1.63</td>
<td>2448020000</td>
<td>0.001</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>1</td>
<td>Geostation</td>
<td>1.63</td>
<td>2448020000</td>
<td>0.001</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
<td>1</td>
<td>Geostation</td>
<td>1.63</td>
<td>2448020000</td>
<td>0.001</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td></td>
<td>1</td>
<td>Geostation</td>
<td>1.63</td>
<td>2448020000</td>
<td>0.001</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td></td>
<td>1</td>
<td>Geostation</td>
<td>1.63</td>
<td>2448020000</td>
<td>0.001</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td></td>
<td>1</td>
<td>Geostation</td>
<td>1.63</td>
<td>2448020000</td>
<td>0.001</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
<td>1</td>
<td>Geostation</td>
<td>1.63</td>
<td>2448020000</td>
<td>0.001</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td></td>
<td>1</td>
<td>Geostation</td>
<td>1.63</td>
<td>2448020000</td>
<td>0.001</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td></td>
<td>1</td>
<td>Geostation</td>
<td>1.63</td>
<td>2448020000</td>
<td>0.001</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td></td>
<td>1</td>
<td>Geostation</td>
<td>1.63</td>
<td>2448020000</td>
<td>0.001</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td></td>
<td>1</td>
<td>Geostation</td>
<td>1.63</td>
<td>2448020000</td>
<td>0.001</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td></td>
<td>1</td>
<td>Geostation</td>
<td>1.63</td>
<td>2448020000</td>
<td>0.001</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td></td>
<td>1</td>
<td>Geostation</td>
<td>1.63</td>
<td>2448020000</td>
<td>0.001</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td></td>
<td>1</td>
<td>Geostation</td>
<td>1.63</td>
<td>2448020000</td>
<td>0.001</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td></td>
<td>1</td>
<td>Geostation</td>
<td>1.63</td>
<td>2448020000</td>
<td>0.001</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td></td>
<td>1</td>
<td>Geostation</td>
<td>1.63</td>
<td>2448020000</td>
<td>0.001</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td></td>
<td>1</td>
<td>Geostation</td>
<td>1.63</td>
<td>2448020000</td>
<td>0.001</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td></td>
<td>1</td>
<td>Geostation</td>
<td>1.63</td>
<td>2448020000</td>
<td>0.001</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td></td>
<td>1</td>
<td>Geostation</td>
<td>1.63</td>
<td>2448020000</td>
<td>0.001</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td></td>
<td>1</td>
<td>Geostation</td>
<td>1.63</td>
<td>2448020000</td>
<td>0.001</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td></td>
<td>1</td>
<td>Geostation</td>
<td>1.63</td>
<td>2448020000</td>
<td>0.001</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td></td>
<td>1</td>
<td>Geostation</td>
<td>1.63</td>
<td>2448020000</td>
<td>0.001</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td></td>
<td>1</td>
<td>Geostation</td>
<td>1.63</td>
<td>2448020000</td>
<td>0.001</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td></td>
<td>1</td>
<td>Geostation</td>
<td>1.63</td>
<td>2448020000</td>
<td>0.001</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td></td>
<td>1</td>
<td>Geostation</td>
<td>1.63</td>
<td>2448020000</td>
<td>0.001</td>
<td></td>
</tr>
<tr>
<td>39</td>
<td></td>
<td>1</td>
<td>Geostation</td>
<td>1.63</td>
<td>2448020000</td>
<td>0.001</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td></td>
<td>1</td>
<td>Geostation</td>
<td>1.63</td>
<td>2448020000</td>
<td>0.001</td>
<td></td>
</tr>
</tbody>
</table>
Field Testing Results
Hardware

- Trimble Geo XM
 - 1 – 3 meter GPS accuracy real time and Post Processing (PP)
 - Accuracy suitable for asset management (benches, news racks, bus stops, payphones, fire hydrants, trees...)
 - Price: $2,335 Hardware only
 - Software & Hardware Bundle Price: $3,150 (includes ESRI ArcPad & Trimble GSPcorrect software)
Hardware

- **Trimble Geo XH**

 - Sub-meter GPS accuracy in the field (sub 30cm Post Processed {PP})

 - Accuracy suitable for storm water infrastructure & asset management (catch basins, manholes, outfalls...)

 - Hardware Price: $ 4,765.

 - Hardware & software Bundle Price: $ 5,350 (includes ESRI ArcPad & Trimble GPScorrect software)
Hardware

Zephyr Antenna & Pole

- Why do you want this?

- ‘Canyon & Canopy’ effect
 - Assists in collecting in Urban canyon aka ‘Downtown’ and in Tree Canopy – Coconut Grove

- Antenna $2000
- Pole $235
- Bracket $175
Hardware

- Ricoh Pro G3 GPS Camera
 - Requires Compact flash
 - Price $870.00 (camera)
 - Speeds data collection by documenting actual condition of asset (tree)
Future Hardware

Lasercraft Contour Laser Rangefinder

- Why do you need this?
 - Measures heights of buildings, trees
 - Can collect many assets you may not be able to reach physically
 - Across canals, streams & rivers
 - Construction or industrial sites that are fenced, hazardous, or inaccessible
- $4,195 Rangefinder
- $200 Yoke Assembly
- $145 Bipod for Laser Pole
City Goals

- Plant 100,000 trees by 2010
- Inventory all trees in the Road Right of Way and on City Property using GIS
- Track current tree inventory
- Implement effective Tree Management practices
- Become a Tree City USA
- Annual City-wide Arbor Day Celebration
- Create an Urban Forestry Plan
GPS Pilot Project

- GPS Data Collection on Virginia Key
 - Collection of rare and endangered trees and shrubs on Virginia Key
 - Documentation of the habitat restoration project
 - NOAA Grant to The Parks Department
 - Started Data collection in July 2006 w/Geo XM
Software

ArcSDE 9.0
ArcGIS 9.1
ArcPad 7
Active Sync 4.2
ArcPad Application Builder 7
Trimble GPS Correct
Database Fields

Trees
- **Common Name**
- **Genus & Species**
- **DBH**
- **HT_FT**
- **HT_IN**
- **In ROW**
- **Condition**
- **Gender**
- **Insp_Date**
- **Insp_By**
- **Flowers**
- **Flower color**
- **Image**
- **Native**
- **Permit_NO**
- **TAG_NO**

Shrubs
- **Common Name**
- **Genus & Species**
- **DBH**
- **HT_IN**
- **In ROW**
- **Condition**
- **Gender**
- **Insp_Date**
- **Insp_By**
- **Flowers**
- **Flower color**
- **Image**
- **Native**
- **Permit_NO**
- **TAG_NO**
Trees

- 131 Tree Types
- 52 Shrub Types
Database Properties

General

<table>
<thead>
<tr>
<th>Domain Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Existing Flowers</td>
<td>Are there Flowers?</td>
</tr>
<tr>
<td>Flower Color</td>
<td>Valid Flower Colors</td>
</tr>
<tr>
<td>Flowers</td>
<td>Do Flowers Exist?</td>
</tr>
<tr>
<td>Gender</td>
<td>Valid Tree Gender</td>
</tr>
<tr>
<td>Inspector</td>
<td>Valid Inspector name</td>
</tr>
<tr>
<td>Location</td>
<td>Valid ROW Locations</td>
</tr>
<tr>
<td>Native</td>
<td>Valid Native Plant</td>
</tr>
</tbody>
</table>

Domain Properties

<table>
<thead>
<tr>
<th>Field Type</th>
<th>Short Integer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Domain Type</td>
<td>Coded Values</td>
</tr>
<tr>
<td>Split policy</td>
<td>Default Value</td>
</tr>
<tr>
<td>Merge policy</td>
<td>Default Value</td>
</tr>
</tbody>
</table>

Coded Values

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Yes</td>
</tr>
<tr>
<td>2</td>
<td>No</td>
</tr>
</tbody>
</table>
Field Name: Properties

General Tab

Domain Name	**Description**
Existing Flowers | Are there Flowers?
Flower Color | Valid Flower Colors
Flowers | Do Flowers Exist?
Gender | Valid Tree Gender
Inspector | Valid Inspector name
Location | Valid ROW Locations
Native | Valid Native Plant

Domain Properties

- **Field Type**: Text
- **Domain Type**: Coded Values
- **Split policy**: Default Value
- **Merge policy**: Default Value

Coded Values:

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>JS</td>
<td>Justin Schreiber</td>
</tr>
<tr>
<td>MA</td>
<td>Martin Arteaga</td>
</tr>
<tr>
<td>RH</td>
<td>Regina Hagger</td>
</tr>
<tr>
<td>RM</td>
<td>Roland Schnee</td>
</tr>
</tbody>
</table>

Domains Tab

Domain Name: Properties

Domain Name	**Description**
Existing Flowers | Are there Flowers?
Flower Color | Valid Flower Colors
Flowers | Do Flowers Exist?
Gender | Valid Tree Gender
Inspector | Valid Inspector name
Location | Valid ROW Locations
Native | Valid Native Plant

Domain Properties

- **Field Type**: Text
- **Domain Type**: Coded Values
- **Split policy**: Default Value
- **Merge policy**: Default Value

Coded Values:

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>JS</td>
<td>Justin Schreiber</td>
</tr>
<tr>
<td>MA</td>
<td>Martin Arteaga</td>
</tr>
<tr>
<td>RH</td>
<td>Regina Hagger</td>
</tr>
<tr>
<td>RM</td>
<td>Roland Schnee</td>
</tr>
</tbody>
</table>
Software

ArcPad Application Builder 7
Future Software

ESRI GPS Analyst
Trimble Terra Sync
Lessons Learned

- Planning
- Batteries
- Aerials (think twice!)
- Consider doing a field test of equipment (hardware & software)
- Compare notes with a GIS network resource
- Borrow equipment form another Dept.
Suggestions

- Start with a geo-database
- Budget for storage space to store pictures
- Data Collection Teams minimum of 2 people
Presenters Information

Regina L. Hagger
GIS Developer
City of Miami
Department of Public Works
444 SW 2nd Avenue, 8th Floor
Miami, FL 33130
Phone: (305) 416-1749
Fax: (305) 416-1278
E-mail: rhagger@ci.miami.fl.us

Michael Schmedt
GIS Analyst
HDR Engineering
315 E. Robinson, Suite 400
Orlando, FL 32801-1949
Phone: (407) 420-4257
Fax: (407) 420-4242
E-mail: michael.schmedt@hdrinc.com
End Notes

- All Photographs were taken by City of Miami employees or contractors, with the exception of:
 - Trimble Hardware & Software
 - ESRI Hardware & Software
 - Ricoh Hardware