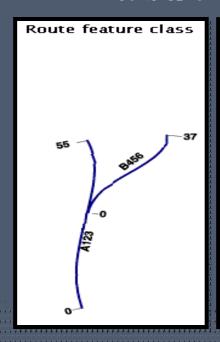
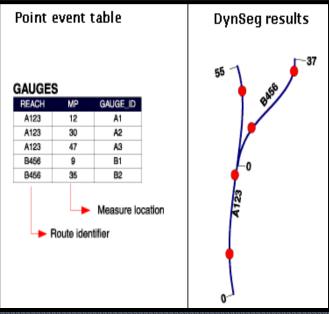
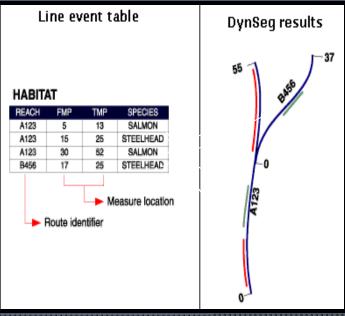
PIMA CO. AZ GIS
LINEAR REFERENCING
SYSTEM (LRS)
DYNAMIC
SEGMENTATION
(DYNSEG)

ESRI UC 2010, San Diego, CA Cody Cohn – Sr. GIS Analyst Pima County AZ

- LRS / DynSeg Basics & Uses
- Pima County's LRS / DynSeg Setup & Processes
- Demo
- Lessons Learned & Challenges


- LRS / DynSeg Basics & Uses
- Pima County's LRS / DynSeg Setup & Processes
- Demo
- Lessons Learned & Challenges


LRS / DynSeg Overview


- Linear Referencing (LRS)
 - Is the term used to describe the methodology for storing, transferring and displaying data using a route layer and measures.
- Dynamic Segmentation (DynSeg)
 - Is the process of computing and displaying the location of events in an event table.

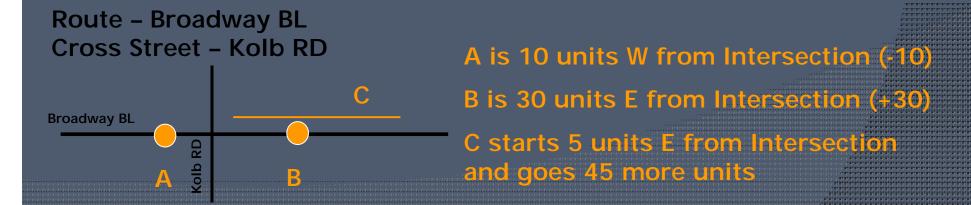
LRS / DynSeg: The Basics

- Need:
 - Route
 - Reference location
 - Geographic locations (or events) stored in tabular form

Source: ESRI help

Why Use LRS / DynSeg?

- Standardized data collection
 - Between Multiple Jurisdictions
- Simplifies storage of data
 - Eliminates segmenting original street network
 - Reduced editing time


- LRS / DynSeg Basics & Uses
- Pima County's LRS / DynSeg Setup & Processes
- Operation of the property o
- Lessons Learned & Challenges

Pima County's LRS/DynSeg

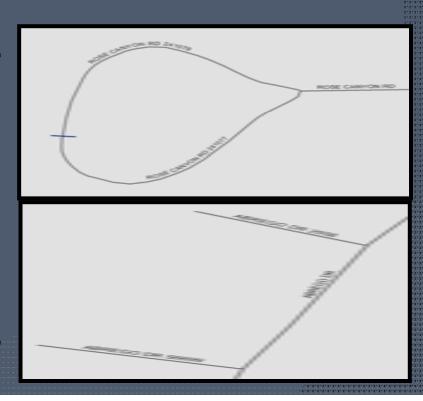
- Purpose: Stop breaking up the street network – LOWER MAINTENANCE
- Why?
 - Wanted edits to street network to key all changes needed for LRS/DynSeg
- How?
 - 'Intersection' Based
 - Several different features classes used in concert to satisfy the Big 3 Needs
 - Had to account for unique configuration of street network

PC's LRS/DynSeg:

- Reference segment Route from street network (and exceptions)
- Reference location 'Intersections' or Cross streets
- Event features plotted 'from' reference location (& distance), 'to' reference location (& distance)

Data Components

- Route = STROUTE :
 - STNET
 - RTBL_LRS_SEGEXCPT
 - STPRERTE
- Intersections or Cross Streets
 - STINTERS
 - STINTMEAS
- Events
 - Event table



ROUTE

- STNET = Maintained road network
- RTBL_LRS_SEGEXCPT = Exceptions table that flags funky segments
 - FK Join ROADID to STNET
- STPRERTE = Streets with exceptions accounted for
- STROUTE = routed STPRERTE

ROADID *	EXCEPTION_TYPE					
241077	LOOP					
241078	LOOP					
2958	KNUCKLE					
56699	KNUCKLE					

Segment Exceptions Related Table

Intersections or Cross Streets

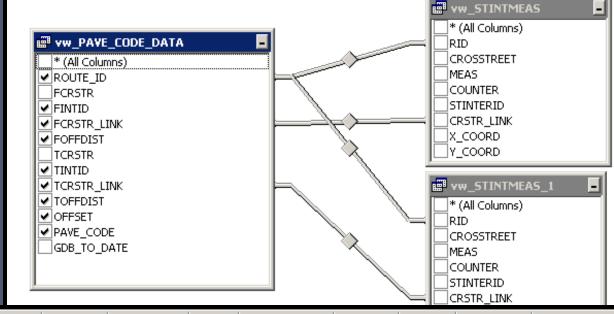
- STINTERS = Polyline endpoints from STNET
- STINTMEAS = table with M values along STROUTE at STINTERS (except end of road)
- Some necessary attributes in STINTMEAS to handle 'Duplicate' Intersections
 - Example: Loops, Different Jurisdictions (Ajo and City of Tucson), Zig Zag, etc

Intersections or Cross Streets

- STINTMEAS as a View provides the Reference Location for events
 - Measure along STROUTE
 - CRSTR_LINK is the FK Join
- Necessary Attributes :
 - CROSSTREET Simple cross street ID
 - The STINTERID is appended when referencing Dup Intersection

RID	CROSSTREET	MEAS	COUNTER	STINTERID	CRSTR_LINK	X_COORD	Y_COORD
VAIL VIEW RD 54080	VAIL VIEW RD	0.00000000	1	7404	VAIL VIEW RD	1073335.6	354462.1
BROADVIEW DR	VAIL VIEW RD	2764.18600000	2	41411	VAIL VIEW RD 41411	1073244.4	355000.9
VAIL VIEW RD	BROADVIEW DR	2598.95100000	2	41411	BROADVIEW DR 41411	1073244.4	355000.9
SAHUARITA RD	VAIL VIEW RD	88008.48600000	1	20228	VAIL VIEW RD	1073199.4	352418.0
VAIL VIEW RD	SAHUARITA RD	0.00000000	1	20228	SAHUARITA RD	1073199.4	352418.0
IRIS PL	VAIL VIEW RD	0.00000000	2	14063	VAIL VIEW RD 14063	1073251.3	352955.1

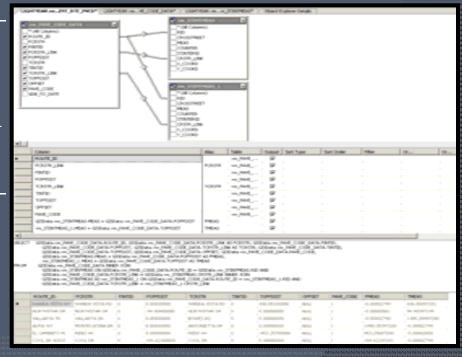
Event Data Table Fields

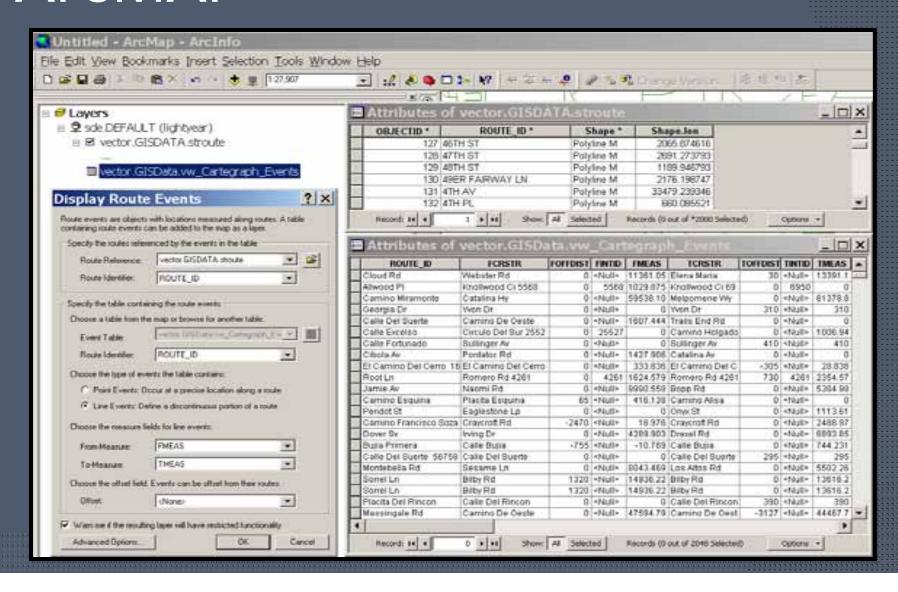

(All manual entry)

- ROUTE_ID route that the event is on
- FCRSTR from cross street name
- FINTID FROM STINTERID for duplicate intersections
- FOFFDIST distance from the FROMCROSSTR
- TCRSTR to cross street name
- TINTID TO STINTERID for duplicate intersections
- TOFFDIST distance from the TOCROSSTR
- OFFSET (only if applicable) used to display event on either side of route
- EVENT_ID unique ID in event data table

View for Event Data Table

 Created to concatenate user entered fields so it can be joined to STINTMEAS


view


	ROUTE_ID	FCRSTR	FINTID	FCRSTR_LINK	FOFFDIST	TCRSTR	TINTID	TCRSTR_LINK	TOFFDIST	OFFSET	PAVE_CODE	GDB_TO_DATE .
	3RD ST	MCKINLEY AV	90477	MCKINLEY AV 90477	0.00000000	2ND AV	113592	2ND AV 113592	0.00000	NULL	1	12/31/9999 12:
	40TH ST	ALVERNON WY	0	ALVERNON WY	-630.521	ALVERNON WY	0	ALVERNON WY	0.00000	NULL	1	12/31/9999 12:
	43RD PL	DODGE BL	0	DODGE BL	0.00000000	DODGE BL	0	DODGE BL	691.439	NULL	1	12/31/9999 12:
-1-1	44TH ST	DODGE BL	59442	DODGE BL 59442	0.00000000	DODGE BL	59442	DODGE BL 59442	938.504	NULL	1	12/31/9999 12:
	44TH ST	PALO VERDE RD	0	PALO VERDE RD	0.00000000	DODGE BL	59441	DODGE BL 59441	0.00000	NULL	1	12/31/9999 12:

Create Final Event Table

- Join event view and STINTMEAS view
- Calculate FMEAS:
 - GISData.vw_STINTMEAS. |
 MEAS +
 GISData.vw_PAVE_CODE_
 DATA.FOFFDIST
- Calculate TMEAS:
 - GISDatavw_STINTMEAS_1
 .MEAS +
 GISData.vw_PAVE_CODE_
 DATA.TOFFDIST

Display Route Event Table ArcMAP

Nightly Processes

- STINTERS
- STROUTE
- STINTMEAS
- Unmapped events
- Flipped routes
- 3 days history STROUTE,
 STINTMEAS, mapped events feature classes

- LRS / DynSeg Basics & Uses
- Pima County's LRS / DynSeg Setup & Processes
- Demo
- Lessons Learned & Challenges

- LRS / DynSeg Basics & Uses
- Pima County's LRS / DynSeg Setup & Processes
- Demo
- Lessons Learned & Challenges

Challenges

- Issues
 - Unique physical aspects of the street network
 - Data Structure
 - Event mapping process
- Challenges
 - Rules and allowances to realize the advantage of single edits with dynamic consequences – esp. across jurisdictions
 - Converting data resources
 - Converting human resources

Lessons Learned

- LRS / DynSeg is not a plug and play environment
- Typical street network configuration is not route creation friendly
- Limited reference information on LRS / DynSeg
- Many flavors of setup
- Nightly processes play a big role

Final Thoughts

- Goal was to have an environment that would be dynamic; allowing typical day to day edits to occur once while supporting mapping for many referenced phenomena automatically ...
- We did that, and better yet, it appears to work!
- It wasn't hard, but it was time consuming and an adventure in problem solving

Thanks!

- Cody Cohn
 - lewis.cohn@pima.gov