Local Climate Change GIS-databased Visioning Tools for Community Decision-Making

Olaf Schroth, PhD; Ellen Pond; Prof. Stephen Sheppard, PhD ^{a)}

Philip Paar b)

a) Collaborative for Advanced Landscape Planning (CALP) Department of Forestry, University of British Columbia With support from Selkirk College, PCIC, CBT and the City of Kimberley

b) Laubwerk GmbH / National University of Singapore

ESRI UC 2010 Climate Change and Sustainable Communities

Room 31 A, 1:30pm – 2:45pm San Diego July 14, 2010

Lenné3D

In co-operation with

Kimberley's Climate Change Adaptation Project: Visualizing Community Land Use Impacts, Adaptation and Mitigation

Research was funded by:

- City of Kimberley
- Columbia Basin Trust
- Real Estate Foundation
- Ministry of Community and Rural Development
- Swiss National Science Foundation

Acknowledgments to:

Jochen Muelder (Lenne3D); Paul Sneed, Chris Gray and Ian Parfitt (Selkirk College), Bob Gray (R.W. Gray Consulting Ltd.), Trevor Murdoch (PCIC), Stewart Cohen (UBC, Environment Canada, Courtney Miller (City of North Vancouver),), Duncan Cavens, Cam Campbell, Kristi Tatebe (UBC)

1. The Visioning Framework

2. The Visioning Process in Kimberley (BC)

- 1. Participatory scenario building
- 2. Geodata
- 3. Geospatial modeling
- 4. Geovisualization / 3D landscape visualization
- 5. Policy outcome
- 3. Societal and scientific effects

1. The Visioning Framework

Visioning is more than a tool, it is a process that is

- participatory
- scenario-based
- holistic
- quantitative and qualitative

Visioning and Visualization Process

Principles: Spatialize – Localize – Visualize

CIALLIP Visioning and Visualization Process

PARTICIPATION .		-		(*)	0
THATA	8 9			1	1
PRODUCTION	000		600		000

2. The Visioning Process

2.1 Participation

What?

Who?

How?

CIALLIP Visioning and Visualization Process

Scenario Method: What if?

- 1. Thinking in alternatives
- 2. Complex factors
- 3. Long-term time scales

CIALLIP Visioning and Visualization Process

Advantages

- Spatial references
- Qualitative and quantitative
- Illustrative

Disadvantages

- Often subjective
- Few formal guidelines
- Often lack of scientific defensibility

CIALLE Visioning and Visualization Process

CIALLIP Visioning and Visualization Process

2.2 Geodata

Data Types:

- Digital Elevation Model (DEM)
- Orthophotos
- Geospatial vector data
- CAD vector data
- Census data
- Other data

CIALLIP Visioning and Visualization Process

2.3 Geospatial Modeling

CIALLIP Visioning and Visualization Process

2.4 Geovisualization

Visioning and Visualization Process

CIALLIP Visioning and Visualization Process

2D GIS map

3D landscape visualization

CIALLIP Visioning and Visualization Process

Climate Change Responses in Planning

- Adaptation = adapt to climate change impacts
- Mitigation = reduce greenhouse gas emissions that cause the changing climate

Virtual Tours in ArcGIS Explorer, Google Earth, Biosphere3D

- Overview, and planned expansion
- Forestry: Mountain pine beetle and forest fire
- Precipitation: Snow and water/flood
- Adaptation options
- Mitigation options
- Resilient, low-carbon vision

Kimberley Emissions

 BASED ON GREENHOUSE GAS EMISSIONS ACCOUNTING BY CALP, 2009, USING SPATIAL METHOD FOR GHG CALCULATIONS

Forest: Mountain Pine Beetle

- High suspectibility for MPB infection, especially in the watersheds
- Higher vulnerability through climate change

Pine Beetle Susceptibility

High Middle Low

CIALLE Kimberley Climate Adaptation Project Visualization Presentation

Forest: Mountain Pine Beetle

• View northwards

Pine Beetle Susceptibility

Middle

Low

Kimberley Climate Adaptation Project CALP Visualization Presentation

Forest Fire

History: Forest fires are part of this landscape

CIALLE Kimberley Climate Adaptation Project Visualization Presentation

Today: High amount of "fuel" in the forest

Climate change: Fire season gets longer

FARSITE Fire Model: Spread of fire within 8 hours

CIALLP Kimberley Climate Adaptation Project Visualization Presentation

Water: Flooding

CIALLP Kimberley Climate Adaptation Project Visualization Presentation

Lenne3D Plugin for ArcScene

57000 trees on a HP 8530w laptop

CIALLIP Visioning and Visualization Process

Visioning case studies in Kimberley (BC) and Entlebuch (Switzerland)

Adaptation Options in Forestry

CIALLP Kimberley Climate Adaptation Project Visualization Presentation

Mitigation: Low-carbon options

GREEN RIBBON CONTEXT

Surrounded by a firesmart, blomass-producing community landscape, a green ribbon of trails links compact nodes along the Mark Creek corridor, with connections to recreational amerities.

From Maran

Flood adaptation:

T Commerce of fixed real location 17.8 Overclass of Conjustice from La 17 7 view from Plate beneants Tax 17 P Line Longerto Res united 1 152 Bare Stevano - Create mange installs · Carlo Scenario & Komertey Adaptiv * 10 Semantic 2 Line Carbon Kimberle VI Classificant Drawing + EVED total tarm un farmer menergi - Dia Public Namport 1. The About one redevergences > 21 Begei Part > 1000 Hereitett, Loss Innunty 20 https://www.insiz.inte We scattgilt, edition, doct, per-W-B-scattiget, arkites, and 201 200 scattering and sold and a set Will accuming account and Chairman Moundaries and Martin

· BUC Vess and Tours El # Ommina BC W / Contrary of Employing Nam 1

en 🗸

ALC: Name 10.00

Yest

Mail and Street of St

· With Endering a Meinterini bei · · · ·

> view from Platit to move the Green infrastructure

Add Lynne - Sixterior

10

16.55

() Manage Layers.)

C. James No. 7

- 3. Conclusions
- 3.1 Societal Effects
- Public awareness: Exhibitions
- Impact on private stakeholder decision-making
- Impact on policy making
- Open long-term outcome?
- Focus on adaptation?

3.1 Scientific Effects

Interactive visualizations

- made complex climate-change comprehensible
- facilitated understanding of spatio-temporal processes
- helped distinguishing alternative scenario pathways

Although the globe metaphor

- might alienate users
- does not appeal to all user groups
- adds drama

3.1 Scientific Effects

Participant rating of the visualization

Benefits in Kimberley Respondents n=38, Mean: 4.370, Standard Deviation 1.051

CIALLIP Visioning and Visualization Process

LOCAL CLIMATE CHANGE VISIONING AND LANDSCAPE VISUALIZATIONS

GUIDANCE MANUAL

Based on the piblt Kimberley Climate Adaptation troject. funded by the Columbia Basin Ituit, Visioning and visualizations funded by the Ministry of Community and Rural Development and the Real Latate Foundation.

Collaborative for Advanced Landscope Planning University of British Columbia

VERSION 1.0. February 2010

Need for different media

- Virtual Globes and posters
- Different topics
- Diverse user groups and learning styles
- See Guidance Manual

CIALLE Visioning and Visualization Process

3.1 Open Questions and Discussion

- Visioning as a combination of participatory scenario methods, climate change risk assessment and interactive geospatial visualization seems to be beneficial
- Potential of ArcGIS Explorer
- Link between climate change models and visualizations?
- Adaptation and Mitigation?
- Long-term impact on policy-making and change of behaviour?

CIAILIP Visioning and Visualization Process