DEVELOPING A NEW ARCGIS TOOL TO QUANTIFY BUILDING-CONTENT VULNERABILITY FROM STORM-SURGE INUNDATION

CHANDI WITHARANA¹
THOMAS MEYER², DANIEL CIVCO², and JEFFREY OSLEEB³

Center for Integrative Geosciences¹, Dept. of Natural Resources and the Environmnet²,

Dept. of Geography³

University of Connecticut

Motivation

Natural hazards occur and recur, impacting humans and infrastructure.

Motivation

It is critical to assess potential damage on the human environment prior to a natural hazard

Problem Statement

The greatest potential for loss of life related to a hurricane is from the <u>storm</u> <u>surge</u>

Objective

develop a new method of quantifying flood-damage risk to vulnerable-building contents

Storm Surge: Damage

Storm Surge: Modeling

SLOSH Model

Sea, Lake and Overland Surges from Hurricanes is a computerized model to estimate storm surge heights and winds resulting from historical, hypothetical, or predicted hurricanes

Storm Surge: Damage Assessment

Damage to Building's

Structure

Contents

Storm Surge: Damage to Building Contents

Methodology

Study Area: Town of Groton

Population ~ 40,000, Population density ~ 490 people/km^2

Methodology

Hypothetical-damage function

$$D = \lfloor S_n(d) \rfloor + 1 - e^{-5Mod[S_n(d),1]}$$

$$S_n(d) = Min(d/m, n)$$

- D normalized damage (unitless, 0 < D < 1)
- d flood-water depth inside the building (meters)
- *m* meters per story
- n number of floors in the building (stories)
- [·] floor operator

Hypothetical damage function

Hypothetical damage function

Damage assessment algorithm: simplified version

Programming with Python

Python IDLE 2.5.1 was used to code the damage assessment-algorithm script

A new ArcGIS 9.3 tool was developed to automate the entire process

Damage Assessment Tool

User interface of the damage assessment tool

ArcToolbox

3D Analyst Tools
 Analysis Tools

Geocoding Tools

Building Damage Assessment Tool

Data Interoperability Tools
Data Management Tools

Estimated damage: 27 flooding scenarios in detail

Flooding scenario							Estin	nated	l Dama	ge (Nomi	nal Da	unag	e - ND)				
Surge height (ft)	Total no. of damaged buildings			Residential			Commercial				Industrial				Unclassified			
	mamber	%	total	ND -1	1>ND >0.5	0.5> ND> 0	total	ND - 1	1>ND> 0.S	0.5>ND> 0	total	ND -1	1>ND> 0.5	0.5>ND> 0	total	ND -1	1>ND> 0.S	0.5>ND> 0
2.0	27	0.4	19	0	1	18	3	0	0	3	0	0	0	0	5	0	1	4
3.0	82	1.1	63	0	6	57	10	0	0	10	0	0	0	0	9	0	2	7
3.5	179	2.3	152	0	13	139	18	0	2	16	0	0	0	0	9	0	3	6
4.0	268	3.5	228	0	26	202	29	0	2	27	0	0	0	0	10	0	2	8
4.5	395	5.1	344	0	49	315	40	0	3	37	0	0	0	0	10	0	4	6
5.0	513	6.7	444	0	67	377	56	0	6	50	0	.0	0	0	14	0	4	10
5.5	647	8.4	554	0	94	450	69	0	9	60	10	0	1	9	14	0	4	10
6.0	750	9.8	637	0	112	525	87	0	14	73	12	0	1	11	14	0	4	10
6.5	850	11.1	721	0	126	595	98	0	17	81	17	0	2	15	14	0	4	10
7.0	948	123	800	0	145	655	111	0	21	90	21	0	2	15	16	0	4	12
2.0	1000	14	000	- 0	1.00	240	100	- 0	200	100	- 21	- 0	- 4	-22	10			10

3-D Damage visualization

Estimated damage

Estimated damages were expressed as <u>nominal</u> <u>damage</u> (0 - 1)

Damage would be more meaningful if expressed in US dollars

building layer did not contain any attributes indicating either <u>structure values</u> or property values

Damage Assessment Tool

The ArcGIS tool is not limited to assessing flood damages posed by storm surges

Therefore, this tool can be used in other flood damage assessments as well by assuming a <u>still</u> water model

Damage function

It would have been desirable to validate the damage function using actual damage data

Following variables should have been included into the damage function

Flood-water velocity (we assumed a <u>still-water</u> model for flooding)

construction material of buildings

