

ESDA, Data Modelling & Evaluation of Uncertainty

ArcGIS Geostatistical Analyst[™] 10 (beta) and G&G software packages

Paola Peroni - Exprodat Consulting Ltd July 2010

Presentation plan

- Project background & scope
- Proposed workflow & tools
- Workflow in Geostatistical Analyst[™] 10 (GA 10)
- G&G applications
- Results
- Conclusions and recommendations

Background

- Derive 2D surfaces from sparsely, discrete data
- Variety of tools and functionality
 - Most GIS applications
 - G&G packages
- E&P workflows often miss data analysis and evaluation of uncertainty
- Limited knowledge of quality of the results and reliability of the models

Project scope

- General workflow and tools for
 - Exploratory spatial data analysis (ESDA)
 - 2D interpolation
 - Evaluation of uncertainty
- Explore functionality and tools available in
 - ESRI ArcGIS GA 10
 - G&G applications widely used in the E&P industry
 - Application 1
 - Application 2

Workflow & tools

Univariate

- Histogram
- Summary statistics
- Normal QQ plot
- Cumulative frequency plot

Multivariate

- QQ plot
- Scatterplot, conditional expectation curve
- Covariation of multiple variables

Anomalies & multiple populations

- Moving windows statistics
- Data transformation
- Voronoi diagram

Spatial continuity & directional influences

- Trend analysis
- Semivariogram/ covariance surface
- Anisotropy

Global estimators

- Declustering tools
- Global polynomials/ Trend surface

Local estimators

Deterministic

Search strategy tools

Without barriers

- Smooth
- Exact

Witho

- Automatic Kriging
- handle

With

barriers

Without barriers

ng

Geostatistics

Search strategy

& semivariogram

With

barriers

handle

Automatic

Cokriging

Magnitude

- Validation
- Cross-Validation

Spatial distribution

- Spatial distribution of residuals
- Simulation

Test dataset

Dataset of geological variables derived from published data (*)

Advantages

- Focus on E&P variables
- Horizon's geological model validated and published by a trusted source
- Geological setting includes barriers (faults)

Derived continuous variables

- Two continuous variables derived from the thickness of the Dunlin Group
 - V1: variance of thickness within the sampling cell (*)
 - V2: function of variance and mean within the sampling cell
- Stratified random sampling strategy to have:

Uneven spatial distribution of points in input dataset

All value classes equally represented in input dataset

A proxy for field-scale & regional studies

PER	Stape 1		- T	Variable 1	Variable 2
297 297	Plat Dr	361122 49900	1001040212202	137903	62973
124	Post (26	982529 136596	4172000X 81879	1.849277	13766
166	Face 250	STREET SANCTY	88807E174034	T104010	1.00104
HE.	Peart_Dir	869733 790718	6729600-20479	3.810094	0.03641
40	Phint De	369660-572102	8877002 67188	E9risad9	8.497723
44	Point 250	1730M-221MG	8687138-47581	3.880109	135100
ibi	Hurs Dir	970067 150636	9690000 NPVF4	1.473646	9 1040004
41	Feart (Dr	980084-075039	8007503 14901	1.347962	E 10H-36
254	Peirs 236	989221 899678	6675793.72367	1.299146	3.102177
129	Point 276 ·	1001004 1001000	8681923 40124	4.966424	E (2646)
Щ,	Punt Jbi	\$71607 540x06	6067463 62334	8.361467	8,142809
(M)	Flore 250	\$5405 E25408	AFTONIOS FINESA	4.367547	8.147709
156	Pearl 26	Re4025 M1006	3400735.6360	7 127964	8 157547
461	Peat Di	500841-63904	96T4548.81138	6.100676	2.24(94)
477	Feire 258	152340.136214	E721074.814B	# 80300E	8.096074
163	Post 256	589623 139607	4660510-30609	13.461048	8.334771
140	Part (N	587436-891276	8000HF1 31985	6.621302	6.43696
et)	Plat 250	983779 180747	6671571,31084	Footes	9.4000031
38	Paint 256	140210-3030816	6100012 61084	17.346070	10.479104
126	Post Di	HERMOR BY LOST	80000094-80014	10.269403	8.50196
154	Part De	\$815/9.50619	6665752 90963	19.387931	8.346103
64	Point 250	100703-000679	8134t85.12178	18.5811534	1.000
107	Point 278	998121 PRINTIN	B077152-60E04	14 012386	3.00731
400	Part 750	\$75963.457908	8691753.ACS81	7,309919	3.467517
160	Pert.Di	154736,27349	47702303046	14.470049	30074162
11	Pear IM	903109.815841	60810100 57472	13.213162	6.696943
efile.	Point 238	969698 183821	6609625-08184	6.1400E3	\$ 732906
34	Post Di	460362.716463	967966E CBE	17.406011	0.754726
ш	Paint 256	(0)+46 (4)(4)	6000 S 2000	7.960603	A. FRANCE
200	Post JN	348125.241597	67(3)89.11791	16.220036	3.779013
42	Point Dil	\$7254E-077911	6694013.40372	4 655665	0.042707
UN	Part 250	Saltinos (145827)	67100a1 4402	16.503000	E.369656

(1.426; 8.216) (28.90; 35.866)

(63.42, 79.306)

(139.100, 146.076)

(*) Graph tool in ArcMap

What we've learnt:

Univariate

- Histogram
- Summary statistics
- Normal QQ plot
- Cumulative frequency plot

Multivariate

- QQ plot
- Scatterplot, conditional expectation curve
- Covariation of multiple variables

Univariate description:

- Highly skewed distribution for V1, far from normal (Gaussian) and close to log-normal
- Distribution of V2 much closer to normal

Multivariate description:

- Non-linearity in joint variation of V1 and V2
- Inter-variable spatial correlation is maximum in ~
 NS direction

What we've learnt:

Anomalies & multiple populations

- Moving windows statistics
- Data transformation
- Voronoi diagram

Spatial continuity & directional influences

- Trend analysis
- Semivariogram/ covanance surface
- Anisotropy

Anomalies & multiple populations

- Stationarity assumption not met (V1). Source to be investigated further
- Possibly two populations for V2
- Spatial continuity & directional influences
 - First order trend ~ EW affecting V2
 - Autocorrelation is directional-dependent for V1 (anisotropy)

Cross-validation statistics & plots

(*) Done in ArcGIS Spatial Analyst™

What we've done:

- Generated models for V1 & V2
 - Global estimators
 - Local estimators (deterministic & geostatistical)

- Two modelling approaches
 - Quick & Dirty
 - Customisation of modelling parameters

Magnitude

- Validation
- Cross-Validation

Spatial distribution

- Spatial distribution of residuals
- Simulation

Magnitude

- Validation
- Cross-Validation

Spatial distribution

- Spatial distribution of residuals
- Simulation

What we've learnt:

- Identified models for which residuals are less biased
- For each model, identified areas with highest values of uncertainty
- Include stochastic concepts to deal with the uncertainty of the modelling process through simulation

Summary: GA 10

- Rich set of tools throughout the whole workflow
- Capability of building advanced spatial models to account for complex spatial behaviours
- Quality of the output
 - Interaction of tools
 - Excellent graphic
- Good "Help" and description of the scientific approach to modelling
- However:
 - Limited capability of including faults

Summary: GA 10

Key:

- Available in GA 10
- Not available in GA 10
- (*) Available in ArcGIS (ArcMap)
- (**) Scatterplot available as Graph tool

G & G applications: general

- Follow the proposed workflow by using tools available in tested application
- Derive the same complex spatial models as done in ArcGIS GA by using variety of available algorithms
 - 'Quick & Dirty'
 - Uses mostly default settings
 - Little or no customisation
 - Common custom parameters
 - Customising model parameters
- Comparison of model uncertainty with results obtained in GA 10

Application 1 & 2: overview

- Good number of algorithms available (deterministic and geostatistics)
- Can automatically handle faults with any local interpolator
- Very few tools for data exploration and analysis (essentially Histogram)
- Limitations in the number of customisable modelling parameters
- Kriging error maps are the only evaluation of uncertainty tool

Models: Application 1 & 2

Models comparison: Application 1 & GA

Models comparison: Application 2 & GA

Summary: Application 1 & 2

Key:

- Available in Application 1 & 2
- Not available in Application 1 & 2

Summary

- GA 10 compares very favourably with established mapping applications in the E&P industry
- ArcGIS viable alternative to other mapping applications
 - Data-dependent
 - Goal-dependent
 - User knowledge-dependent
- Integrated workflow
 - GA 10 for advanced parameter customisation
 - Application 1/Application 2 for modelling (heavily faulted datasets)

Some additional thoughts

- Invest time in data analysis before attempting interpolation
- Evaluation of uncertainty as a key step within the modelling process
- Investigate performance of software packages considering alternative "data scenarios":
 - More sparse datasets
 - Well & 2D seismic data
 - More heavily faulted datasets

Thank you!

Paola Peroni

email:pperoni@exprodat.com

web:www.exprodat.com