FLYING FISHERIES

Aerial Survey Monitoring Tools for Environmental Impact Assessment

13th July 2010
Simon Ross – Senior GIS Specialist
Dr. Adam Payne – Fisheries Management Consultant
Overview

• **Introduction**
 - Data Sources for Fisheries Management in the UK
 - Reporting Requirements
 - Custom development concept

• **Overflights Surveys**
 - Data format
 - Standardized mapping requirements
 - Custom tool development and demonstration

• **Vessel Monitoring System**
 - Data format
 - Custom tool development and demonstration

• **Next Steps – Future Development Plans**
Introduction

- **Fisheries Management in the UK**
 - Marine Management Organization (MMO) conducts Marine Control and Surveillance (MCS) to monitor commercial fishing activity

 - Conduct 2 primary types of vessel surveillance in addition to monitoring landings data:
 - **Overflights Surveys** – Spotter planes over fishing areas recording fishing vessels, types, activities
 - **Vessel Monitoring System (VMS)** – GPS system providing 2 hourly point data for vessel locations

 - ERM use this data to assess potential impacts from offshore developments (offshore wind, ports, aggregate dredging) and consult with the MMO and CEFAS to review findings.
Introduction

• Reporting Requirements
 - No statutory requirement to review monitoring data but expectation from MMO and CEFAS that it will be assessed.
 - No specific guidelines on best practice for assessing data – large volume of data provides many options for analysis and map production:
 » Vessel Type
 » Nationality
 » Time period – sum by date, month, year, season

• Custom development concept
 - Historically basic summary of all vessels engaged in fishing. Single set of summary maps by season.
 - GIS analyst not the best person for the job – require a tool to enable fisheries specialist to query, analyze and map data
OVERFLIGHT SURVEYS

Mapping Tool Development

Delivering sustainable solutions in a more competitive world
OVERFLIGTS: Methodology Overview

• Data Collection
 ✷ Spotter planes fly over fishing grounds and record any fishing vessel >10m in length:
 » Date
 » Vessel ID Number
 » Vessel Type – gear type
 » Current Activity – Steaming, Fishing, Stationary
 » ICES grid sub-rectangle (0.5° E-W, 0.25° N-S = 20 x 20 miles)

• Source Data
 ✷ Provided as separate text files:
 » Observations
 » Number of flights over each rectangle
 ✷ Data requires standardization to account for variations in flight frequency
OVERFLIGHTS: Standardization Method

- **Standardizing observations**
 - Method recommended by CEFAS
 - No. of Observations / No. of Flights
 - Can be applied to any combination of vessel types, time periods
 - Large number of calculations and multiple map outputs possible
 - Custom tool developed in VBA

- **Reference**
OVERFLIGHTS: Tool Workflow

- Process Raw Data
 - Data loaded to template geodatabase with standard schema for tables
 - Rectangles for Study Area extracted from master grid
 - Data loaded to mxd containing VBA code for fisheries specialist to analyze

![Layer and data selection interface](image)
OVERFLIGHTS: Tool Workflow

- Select Query Parameters
 - Nationality
 - Vessel Type
 - Activity Type
 - Time Summary

- All options enable multi-selection of criteria

- Tool generates a copy of the polygon grid with standardized obs for selected parameters
OVERFLIGHTS: Tool Workflow

- Mapping Tool
 - User applies standard symbology to analysis output. User adds additional base data as needed.
 - User selects layer and runs tool producing individual PDF for each time period, updates layer and title for each map.
VEESSEL MONITORING SYSTEM

Mapping Tool Development

Delivering sustainable solutions in a more competitive world
VMS: Methodology Overview

• Data Collection
 ✷ GPS devices fitted to vessels >15m in length and record positions every 2 hours
 » Vessel ID Number
 » Vessel Type – gear type
 » Position (Lat/Long)
 » Speed (inconsistently recorded)
 ✷ UK VMS data does not record vessel activity

• Source Data
 ✷ Provided as text files – format changed over time. Requires pre-processing using custom scripts before loading to geodatabase
VMS: Methodology Overview

- **Analysis Methodology**
 - Adapted by ERM from existing UK wide analysis
 - Uses speed information in data to estimate vessel activity
 - Speeds calculated from locations where speeds not available
 - Activity reported on subdivisions of ICES sub-rectangles – greater data volume enables greater granularity

- **Reference**

VMS: Tool Workflow

- Process Raw Data
 - Data pre-processed and loaded to template geodatabase with standard schema for tables
 - Rectangles for Study Area extracted from master grid
 - Data loaded to mxd containing VBA code for fisheries specialist to analyze
VMS: Tool Workflow

- **Analysis and Mapping has four stages**
 1. Process Tables – Converts table to points, re-projects to selected local coordinate system and calculates tool specific fields (Run Once)
 2. Process Speed – Calculates speed between points for individual vessel voyages (Run Once)
 3. Query Data – Select query parameters (Run multiple)
 4. Plot Data – Generate map series from query (Run multiple)
VMS: Tool Workflow

- **Select Query Parameters**
 - Nationality
 - Vessel Type
 - Speed range
 - Time Summary
- **All options enable multi-selection of criteria**
- **Tool generates a copy of the polygon grid with standardized obs for selected parameters**
VMS: Tool Workflow

- **Mapping Tool**
 - User applies standard symbology to analysis output. User adds additional base data as needed.
 - User selects layer and runs tool producing individual PDF for each time period, updates layer and title for each map.
DELIVERING SUSTAINABLE SOLUTIONS IN A MORE COMPETITIVE WORLD

CONCLUSIONS

Future Developments
Conclusions

• Benefits of Custom Tool Approach
 - The specialist is in control of the assessment with minimal GIS training
 - Tools enable rapid assessment of multiple user-defined input parameters
 - Multiple series of maps can be generated for different time periods
 - Potential user error in bulk data processing is removed
Future Developments

- Conversion of tools to .NET to provide more robust development platform
- Enhanced mapping functions to enable greater user interaction with automated mapping
- Development of web-based version of tools to remove need for desktop software and increase access to users