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Abstract: 

     Mountaintop removal mining in Appalachia continues to be studied to evaluate its 

cumulative impact on aquatic and terrestrial systems. Vital to the evaluation is the ability 

to map disturbance features over large extents. Our approach was to integrate both 

Geographic Information Systems (GIS) and remote sensing to classify disturbed 

landscape features for mining, forestry, and construction activities. Spectrally driven 

analysis of 1 meter spatial resolution aerial imagery combined with landform terrain 

analysis allowed for accurate classifications. GIS data layers were combined in order to 

summarize the distribution of disturbance throughout watersheds of interest. Individual 

watershed variables were accumulated to better map the cumulative impacts spatially 

throughout the watershed. The approach offers an improvement over traditional 

approaches that assumed the permitted mine area was the full extent of disturbance. We 

found on average that 28% of a mine permit was disturbed at any particular time of 

mining activity. 
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Introduction 
 
    This project investigated mountaintop removal mining with valley fills (MTR/VF) 

disturbance mapping and the mapping of additional land cover in the Southern 

Appalachian Coalfields of West Virginia as an input for modeling receiving stream 

conditions. It was conducted using publically available, 1:10,000 scale National 

Agriculture Imagery Program (NAIP) orthophotography, which was selected because it 

was temporally and spatially appropriate for mapping the land cover and disturbance data 

of interest. Due to compression, reduced spectral resolution, variable illumination, color 

balance inconsistencies, shadowing, and the high spatial resolution of the data, we did not 

pursue a purely image classification method. Instead, a combination of user-assisted 

feature extraction, GIS overlay within ArcMap, and manual digitizing was used to 

conduct the mapping. The resulting land cover and land use data along with additional 

GIS data available in the region were summarized relative to 1:24,000 scale catchment 

areas and used as predictor variables in modeling receiving stream conditions.  

     MTR/VF is the leading cause of land cover change in central Appalachia, including 

the Southern Coal Fields of West Virginia (Palmer et al., 2010). Multiple West Virginia 

watersheds have greater than 10% of their total area disturbed by surface mining as upper 

elevation forested land cover is converted to barren, grasslands, or scrub/shrub land 

cover. Reclamation commonly results in grasslands on the topographically altered 

mountaintops, and in the past such sites have generally shown little or no regrowth of 

woody vegetation and minimal carbon storage even after 15 years (Palmer et al., 2010). It 

has been estimated that 1.05 to 1.21 million acres of the landscape has been disturbed by 
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surface mining within the Appalachian region; additionally, at least 500 mountaintops 

have been altered by MTR/VF mining (Geredien, 2009b). 

        Mountaintop mining has been shown to have a negative impact on terrestrial and 

aquatic ecological community health, stream chemistry, surface runoff volumes, and 

potentially human health (Hitt and Hendryx, 2010; Negley and Eshleman, 2006; Palmer 

et al., 2010; Phillips, 2004; Petty et al., 2010; Pond, et al., 2008; Wickham et al., 2007). 

For example, in an EPA (2002) survey of 78 streams affected by surface mining, 73 were 

found to have selenium concentrations greater than the threshold for toxic 

bioaccumulation. Paybins et al. (2000) linked declines in biodiversity with degree of 

mining disturbance in West Virginia. Also, sulfate concentrations have been closely 

linked to extent of mining in watersheds (Sams and Beer, 2000). Palmer et al. (2010) 

found significant increases in metal concentrations and decreases in biological health in 

mine impacted streams. If a model is to be developed that links stream chemistry and 

biological health to environmental stressors, such as surface mining, accurately 

describing the landscape stressors are essential to establish a relationship. 

     Quantifying and mapping MTR/VF mining disturbance has been proven to be 

challenging. Prior to 2006, estimates of MTR/VF disturbance were often made using 

permit boundary data; however, it is uncommon for the entire spatial extent of a 

permitted surface mine to be disturbed at one time (Geredien, 2009a).  Surface mining 

and reclamation extents have also been extracted from Landsat MSS, TM, ETM+, and 

SPOT data with varying degrees of success (Anderson and Schubert, 1976; Anderson et 

al., 1977; Campagna, 2007; Irons and Kennard, 1986; Parks et al., 1987; Prakash and 
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Gupta, 1998; Rathore and Wright, 1993; Townsend et al., 2009; Yuill, 2003). 

Appalachian Voices (unpublished, 2006) and Geredien (2009a) relied on manual 

digitizing of disturbance features; as a result, remote sensing and orthophotography 

interpretation have been investigated for surface mine disturbance mapping. We have 

expanded on previous work by incorporating feature extraction methods to make use of 

high spatial resolution imagery. 

Methodology: 

Orthophotography: 

     Imagery was obtained through download as compressed MrSid files from the West 

Virginia GIS Technical Center as county datasets with a compression ratio of 15:1. The 

most recent color infrared (CIR) orthophotography was collected in late summer 2007. 

The data were originally published in February of 2008 by the Aerial Photography Field 

Office of the Farm Service Agency, which is part of the U.S. Department of Agriculture, 

and this data are currently publically available. The orthophotography has a 1 meter 

nominal pixel resolution, a scale of 1:10,000, and is rectified to a horizontal accuracy of 

within +/- 5 meters of reference digital ortho quarter quads from the National Digital 

Ortho Program.  

     The most recent true color imagery was collected during leaf-on conditions in 2009, 

published in October 2009, and made available to the West Virginia GIS Technical 

Center in January 2010. The true color orthophotography also has a 1 meter nominal 

pixel resolution, a scale of 1:10,000, and is rectified to a horizontal accuracy of within +/- 

5 meters of reference digital ortho quarter quads from the National Digital Ortho 
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Program. CIR orthophotography was not made available in West Virginia by NAIP in 

2009. 

Study Area: 

     The MTR/VF region in West Virginia is shown in Figure 1. This region intersects 17 

counties within the state and is estimated as 11,733 km2 in area. Mapping was conducted 

throughout this region at a 1 m cell size and on a county-by-county basis. In order to map 

land cover throughout entire Hydrologic Unit Code (HUC) 8 watersheds, county sets 

were combined. This paper will specifically make reference to mapping conducted in the 

Coal River Watershed, a 2,308 km2 HUC 8 watershed heavily disturbed by surface 

mining. 
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Figure 1: MTR/VF region in West Virginia and Coal River Watershed. 
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Overall Classification Method: 

     Figure 2 outlines the classification method used to create land cover data. This method 

relies on user-assisted feature extraction and GIS overlay. First, land cover data was 

extracted from the 2007 (CIR) and 2009 (true color) NAIP imagery as forested, 

grasslands, or barren. Scrub/shrub areas were included in the grasslands class. Second, 

the results were selectively combined as will be described below. Third, in order to 

differentiate landscape disturbance within mine permits, West Virginia Department of 

Environmental Protection (WVDEP) surface mine permit boundaries were utilized. 

Fourth, ancillary water body data from the West Virginia Statewide Addressing and 

Mapping Board (WVSAMB) were utilized to obtain the open water class. Rogan et al. 

(2003), Bolstad and Lillesand (1992), and Homer et al. (2004) have documented the use 

of combining ancillary GIS data with remote sensing data to increase thematic map 

accuracy and to allow for the mapping of more detailed land cover. This process will be 

discussed below, and Figure 2 describes the method. The following land cover classes 

were of interest: 

1. Forested 

2. Grasslands/Pastureland/Agricultural Land 

3. Barren/Developed 

4. Forested in Permit (Not Disturbed) 

5. Grasslands in Permit (Potentially Reclaimed) 

6. Barren in Permit (Potentially Active Mining or Not Yet Reclaimed) 

7. Open Water 
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Figure 2: Classification method used. 

User-Assisted Feature Extraction: 

     The software tool Feature Analyst by Visual Learning Systems (VLS) was used within 

Erdas Imagine to perform the user-assisted feature extractions. Three land cover types 

were differentiated: forested, grasslands, and barren. In terms of surface mine permit 

areas, barren areas may represent active mine sites or areas that have not yet been 

reclaimed. Grasslands within mine permits may represent reclaimed mine lands. Forested 

areas within mine permits would represent areas that had not yet been disturbed by 

mining.  

     The land cover data was extracted from the 2009 and 2007 NAIP orthophotography. 

Initially, only the 2009 true color data were classified; however, visual interpretation of 

the results showed that this method often did not capture the entire spatial extent of 
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grassland areas, especially reclaimed mine lands. As a result, the most recently available 

CIR orthophotography from 2007 was also classified, and the results were combined. 

This was done to increase the accuracy of the grasslands class and assumed that 

grasslands had not reverted to forested land cover in the two year period. The barren and 

forested land cover classes were derived from the 2009 classification, and the grasslands 

class was derived from a combination of the 2009 and 2007 result to make use of the CIR 

data. 

     User-assisted feature extraction uses user-defined knowledge, as training data, to 

recognize and classify target features in an image (Visual Learning Systems, 2002). 

Feature Analyst uses machine-learning algorithms and techniques as object recognition to 

automate feature-recognition from imagery (Visual Learning Systems, 2002). Unlike 

supervised classification techniques, feature extraction classifies an image using more 

than just the digital number (DN) or spectral information contained by each pixel. Spatial 

context information such as spatial association, size, shape, texture, pattern, and shadow 

are considered (Opitz, 2003). Studies have shown that feature extraction or object-based 

algorithms are more effective and accurate at extracting information from high resolution 

imagery than traditional image classification methods, such as supervised classification, 

because additional image characteristics are considered such as spatial context (Friedl 

and Brodley, 1997; Harvey et al., 2002; Hong and Zhang, 2006; Kaiser et al., 2004).  

     As the spatial resolution of an image increases, the spectral variance within a land 

cover class also increases; as a result, it may not be appropriate to extract thematic data 

from high resolution aerial imagery using processes developed for coarser resolution 
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satellite imagery (Carleer et al., 2005; Gong et al., 1992).  Feature extraction takes into 

account the spatial context that is available in high resolution imagery, such as NAIP 

orthophotography. Due to the high spatial resolution and reduced spectral resolution of 

NAIP orthophotography in comparison to satellite imagery traditionally used to obtain 

thematic map data, we decided upon Feature Analyst as the classification tool in order to 

make use of the spatial context information contained in the imagery. 

Training Data Collection: 

     Training data were collected that appropriately represented the classification of 

interest by manually digitizing training data using the orthophotography as reference 

within ArcMap; for example, forested training data would include forested areas on all 

aspects to take into account variable illumination due to topography. Because the imagery 

was not perfectly color balanced, it was necessary to collect training data across entire 

county extents to take into account the variability. Separate training data was collected 

for the CIR and true color imagery. As an example, Table 1 describes the training data 

collected from the 2009 true color data in Boone County, a county predominately within 

the Coal River Watershed. 

Table 1: Training data from 2009 true color NAIP orthophotography for Boone County. 

Class Number of Training Polygons Total Training Area 

Grasslands 165 389,935 m2 
Forested 147 4,738,141 m2 
Barren 101 1,045,063 m2 
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GIS Overlay: 

     GIS overlay of ancillary GIS data available for West Virginia was used to refine the 

land cover classes, and this was conducted in ArcMap. Two ancillary GIS datasets were 

used to enhance the feature extraction results. First, the results were refined relative to 

surface mine permit boundaries made available by WVDEP to classify land cover as a 

result of surface mining. Although there is error associated with the available mine permit 

polygon data, the researchers accepted this data as definitive boundaries in order 

differentiate land cover resulting from surface mining. Second, WVSAMB water body 

polygon data were added to the results to provide an estimate of open water land cover. 

This data was extracted from 0.6 m cell size, 1:4,800 scale, leaf-off imagery collected in 

2003, and the assumption was made that open water land cover had not changed 

significantly over that time. 

Manual Digitizing: 

     After experimentation with user-assisted feature extraction within the available 

software and using the available orthophotography, we found that certain features of 

interest could not be easily extracted. Valley fill faces are an example. In terms of land 

cover and spatial context, valley fill faces are very similar to other types of reclamation; 

as a result, they could not be adequately separated from other reclaimed areas. However, 

an analyst can easily manually digitize these v-shaped, terraced slopes adjacent to mine 

sites using high resolution aerial imagery. This is a task more suited for manual 

digitizing. The feature extraction of generalized land cover was augmented with GIS 

overlay and also manual digitizing.  
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     Features that were manually digitized from the NAIP orthophotography are described 

in Table 2. Digitizing was conducted at a base scale of 1:10,000 as this was the scale of 

the NAIP imagery. A 500-by-500 m grid was created across mapping extents, and these 

grid lines were used to guide the analyst through the imagery during the mapping process 

within ArcMap. We made a minimum of three passes through the imagery to check 

digitizing results. 

Table 2: Manually digitized features. 

Feature Description 
Valley Fill 

Faces V-shaped, terraced slopes adjacent to mine sites 

Slurry Ponds Ponds adjacent or within areas of surface mine 
disturbance/often spectrally dark  

Clear Cut 
Forestry 

Forestry with distinct boundaries/deforested areas surrounded 
by forested land cover/evidence of access roads and landing 

pads 

Construction Barren exposure induced by construction/predominantly road 
construction 

 

Summarizing Data: 

     Once land cover was mapped, the data was summarized relative to 1:24,000 scale 

catchment areas of which there are 4,229 within the Coal River Watershed. The Tabulate 

Area function within the Spatial Analyst Extension of ArcMap was utilized to obtain the 

area of each land cover class within each catchment area. The NHD Analyzer Toolbar, 

another Arc extension developed by Dr. Sam Lamont and Vishesh Maskey of  the West 

Virginia University Natural Resource Analysis Center, was used to map cumulative 

disturbance throughout the watershed extent. This process allowed for upstream 

disturbance to be accumulated to downstream catchments. This resulted in a vector layer 
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of 1:24,000 scale catchments appended with percentage of cumulative upstream land 

cover and land disturbance that described the cumulative impact of mining disturbance 

throughout the HUC 8 watershed.  

     Additional GIS data were summarized for the catchment areas such as National 

Pollution Discharge Elimination System (NPDES) points and manmade structure point 

locations. The number of such points upstream from and within each catchment was 

characterized. Once this land cover data and additional variables were summarized and 

accumulated relative to 1:24,000 scale catchments, they could be related to field 

measurements of conductivity and benthic macroinvertebrate populations as predictive 

variables. This was the primary use of the data. Landscape characteristics were related to 

receiving stream conditions at the HUC 8 scale. 

Results and Discussion: 

     The land cover data created for the Coal River HUC 8 Watershed using user-assisted 

feature extraction and GIS overlay are described in Figure 3 and Table 3. Estimated 

user’s accuracies for the three land cover classes obtained through feature extraction 

ranged from 78% to 99%. Forested and barren land cover were mapped with accuracy, 

but grasslands, including scrub/shrub land cover, were more difficult to extract and were 

difficult to distinguish from forest. There is also error associated with the mine permit 

and water body data utilized though this is difficult to quantify.  

     As Table 3 describes, 8.7% of the watershed was estimated as forested in mine 

permits. As a result, if permit boundaries alone were used to estimate the extent of 

mining disturbance, an overestimate of disturbance would be obtained. Within the Coal 
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River Watershed, only 18.9% of permitted mine lands were predicted as barren while 

31.3% was estimated as grasslands, or potentially reclaimed mine lands. Generally and 

throughout the Southern Coal Fields of West Virginia, we found on average that 28% of a 

mine permit was disturbed at any particular time of mining activity. As a result, utilizing 

available imagery allowed for a more accurate estimate of mining disturbance extents. 
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Figure 3: Land cover data for Coal River Watershed. 
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Table 3: Final land cover data for Coal River Watershed. 

Class Area (km2) Percentage of Watershed 
Forested 1,684.2 km2 73.0% 
Grasslands/Pastureland/Agricultural Land 164.2 km2 7.1% 
Barren/Developed 41.4 km2 1.8% 
Forested in Permit 200.7 km2 8.7% 
Grasslands in Permit 127.6 km2 5.5% 
Barren in Permit 76.4 km2 3.3% 
Open Water 13.1 km2 0.6% 

 

     An example of a manual digitizing result for valley fill faces is provided in Figure 4. 

Manual digitizing from the 2009 true color imagery allowed for additional land cover and 

landscape disturbance features to be mapped that were not spectrally or spatially 

separable from other land cover types using the software and imagery available. Forestry, 

construction, valley fill faces, and slurry ponds were manually digitized, and this data 

provided additional landscape characteristics that could be summarized by 1:24,000 scale 

catchments. 
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Figure 4: Valley fill faces manually digitized from NAIP imagery. 

    Figure 5 described the cumulative percentage of upstream surface mine related 

disturbance for the Coal River Watershed. This includes barren disturbance or active 

mining, reclaimed mine lands, valley fills, and slurry ponds. Summarizing and 

accumulating the data relative to 1:24,000 scale catchment areas allowed the data to be 

utilized as predictive variables in modeling receiving stream conditions. Although this 

paper will not specifically discuss the receiving stream modeling in which this data was 

utilized, it was found that this mapping method provided an adequate representation of 

the landscape for the modeling purposes. 
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Figure 5: Cumulative mining disturbance in Coal River Watershed. 
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Conclusion: 

      NAIP orthophotography provided adequate temporal and spatial resolution to conduct 

mapping of land cover and landscape disturbance in the Southern Coal Fields of West 

Virginia; however, obtaining thematic map data from this orthophotography was 

complicated by compression, reduced spectral resolution, variable illumination, color 

balance inconsistencies, shadowing, and the high spatial resolution of the data. The 

researchers found that generalized land cover could be differentiated using user-assisted 

feature extraction and GIS overlay.      

     Certain features of interest could not be adequately mapped using user-assisted feature 

extraction, the available software, and the available orthophotography. One example is 

valley fill faces, which are easily manually digitized but difficult to separate spectrally 

and spatially from other reclaimed mine lands. Augmenting feature extraction results 

with manual digitizing was necessary in this research to obtain all data of interest, and 

NAIP imagery provided an appropriate mapping scale. 

     Although NAIP orthophotography is not optimal for extraction thematic map data, 

adopting a method that utilized user-assisted feature extraction, GIS overlay within 

ArcMap, and manual digitizing allowed for mapping results that met the needs of the 

project. Landscape disturbance and additional variables were mapped that could be 

related to receiving stream conditions at the HUC 8 watershed scale. This method 

allowed for publically available, high resolution, temporally appropriate data to be 

utilized to map a landscape that is experiencing accelerated disturbance and change. 
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Purpose

Improve the spatial and temporal
mapping accuracy of disturbed
landscape features to improve
modeling

Use publically available and
spatial/temporally appropriate
National Agriculture Imagery
Program (NAIP) orthophotography to
obtain thematic map data

Provide input land cover and
disturbance data for environmental
modeling

Mountaintop Removal With Valley Fills (MTR/VF)

Creating Land Cover Data From NAIP

Imagery Used

Imagery 
Source

Imagery 
Date

Imagery 
Type Dominant Use

NAIP Ortho-
photography

Summer 
2009

True 
Color

Most Current
Extraction of Land 

Cover
NAIP Ortho-
photography

Summer 
2007

Color
Infrared

Extraction of 
Grasslands

Data downloaded by
county mosaic in MrSID
format from West
Virginia GIS Technical
Center.

• 1 m nominal pixel spacing
• Publically available
• Rectified to a horizontal accuracy of

+/ 5 meters of reference digital
ortho quarter quads

• 1:10,000 Scale

Training Data

• Training data as shape files
• Collected by visual

interpretation of the
imagery within ArcMap

• Training data should mimic
the spatial and spectral
variability of the land cover
classes

Class Number of Training 
Polygons

Total Training 
Area

Forested 165 389,935 m2

Grasslands 147 4,738,141 m2

Barren 101 1,045,063 m2
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User Assisted Feature Extraction

• Feature Analyst by
Visual Learning
Systems

• Makes use of spectral
and spatial attributes
of data

• May need to clean up
results by
manipulating training
data

• 1 run

Visual Learning Systems Feature Analyst
for Detection of MTR/VF Disturbance

“Using spectral information and
feature characteristics such as
spatial association, size, shape,
texture, pattern, and shadow in
user identified feature
examples, Feature Analyst
learns to recognize
and classify targeted features in
an image.”

Feature Analyst Users Manual

Previous studies have shown that feature extraction tools/algorithms are more effective and accurate at extracting
information from aerial imagery than traditional image classification algorithms that only rely on spectral values
(Gong et al., 1992; Harvey et al., 2002; Friedl and Brodley, 1997).

Erdas Imagine

VLS
Feature Analyst

What is Feature Extraction?
User Assisted Feature Extraction uses

user defined knowledge, as training
data, to recognize and classify target
features in an image. Machine
learning algorithms and techniques
serve to automate the feature
recognition process.

Advantages:
1. Not as labor intensive or time

consuming as manual
digitization (Blundell and Opitz)

2. More accurate than traditional
classification techniques (Gong
et al., 1992)

Advantages we have found:

1. Appropriate for imagery
scale (1:10,000)

2. Reproducible results

Raw Imagery >Thematic Map Data

GIS Overlay
• GIS Overlay is used to

combine thematic map data
and ancillary GIS data to
further distinguish land cover
classes

• The adjacent thematic map
was produced using the
following input data
• 2009 true color NAIP

Imagery
• 2007 CIR NAIP Imagery
• Manually digitized

training data
• WVDEP surface mine

permits
• SAMB water body

polygons

Boone County, WV

GIS Overlay Analysis:

• Performed in ArcMap
• Makes use of:

• Raster Calculator
• Vector to Raster

Conversion
• Mosaic
• Reclassify

• Manipulate land cover
data as integer raster
datasets
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Coal River Watershed

Class Area (km2) Percentage of
Watershed

Forested 1,684.2 km2 73.0%
Grasslands/Pastureland/Agricultural
Land 164.2 km2 7.1%
Barren/Developed 41.4 km2 1.8%
Forested in Permit 200.7 km2 8.7%
Grasslands in Permit 127.6 km2 5.5%
Barren in Permit 76.4 km2 3.3%
Open Water 13.1 km2 0.6%

Beckley, WV

Raleigh County, WV

Manual Digitizing in ArcMap
• Certain features of interest

were difficult to separate
spectrally and spatially
from the NAIP imagery

• These features were
manually digitized using the
imagery and feature
extraction results as a guide

• 1:10,000 base digitizing
scale, though researchers
did digitize at a finer scale

Feature Description
Valley Fills V-shaped, terraced slopes adjacent to mine sites

Slurry Ponds Ponds adjacent or within areas of surface mine 
disturbance/often spectrally dark

Clear Cut 
Forestry

Forestry with distinct boundaries/deforested areas surrounded 
by forested land cover/evidence of access roads and landing 

pads

Construction Barren exposure induced by construction/predominantly road 
construction

Accuracy of Remote Sensing Data

Reference Data
Majority (Pixel Based)

Forested Grasslands Barren Row Total User's 
Accuracy

Remote Sensing Data
Forested 198 1 1 200 99%

Grasslands 25 165 10 200 83%
Barren 3 17 180 200 90%

Column Total 226 183 191 600

Producer's Accuracy 88% 90% 95% Overall:
91%

1. Remote sensing error was assessed in Boone County
using 600 randomly selected circular areas (15 m radius)

2. Total area: 421,432 m2

3. Points were randomly selected in Hawth’s Tools
4. Majority classification was determined using the Spatial

Analyst Extension in ArcMap
5. The majority class was then manually interpreted from

the imagery
6. Method takes into account mapping scale and

aggregation
7. The Khat Coefficient of Agreement was calculated as 86%

Applying Data for Modeling
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Land Cover Data for MTR/VF
Region

1. High resolution forest cover
2. Forest fragmentation (Vogt

et al., 2007)
3. Critical forest

1. Steep Slopes
2. Riparian Areas
3. Landform
4. Headwater

Watersheds
5. Soil Productivity
6. Contiguous

4. Terrestrial habitat models
1. Bird community index
2. Louisiana Waterthrush
3. Amphibian/Reptile

habitat

Upper Guyandotte
Watershed

After Vogt et al., 2007
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Ecological Land Units

10: Cliff
11: Steep Slope
12: Slope Crest
13: Upper Slope
14: Flat Summit
20: Sideslope
21: Cove
30: Dry Flat
31: Moist Flat
32: Wet Flat
33: Slope Bottom

Modeling by 1:24,000 Scale Stream
Segments
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Mined sites: R2 = 0.84; p < 0.0001.

Developed sites: R2 = 0.51, p = 0.079.

Combined sites: R2 = 0.85; p < 0.0001.

Current Conditions:
Conductivity

Estimate R2

Intercept 3.298

%SM 1115.97 0.46

NPDES 239.37 0.39

Estimate R2

Intercept 115.32

%SM 1525.07 0.15

200M Structures 4.68 0.13

NPDES 186.21 0.23

Estimate R2

Intercept 122.9

%SM 2028.4 0.76

NPDES 160.3 0.09

•Slide courtesy of Eric Merriam and
Dr. Todd Petty

Conclusions


