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Abstract:

Mountaintop removal mining in Appalachia continues to be studied to evaluate its
cumulative impact on aquatic and terrestrial systems. Vital to the evaluation is the ability
to map disturbance features over large extents. Our approach was to integrate both
Geographic Information Systems (GIS) and remote sensing to classify disturbed
landscape features for mining, forestry, and construction activities. Spectrally driven
analysis of 1 meter spatial resolution aerial imagery combined with landform terrain
analysis allowed for accurate classifications. GIS data layers were combined in order to
summarize the distribution of disturbance throughout watersheds of interest. Individual
watershed variables were accumulated to better map the cumulative impacts spatially
throughout the watershed. The approach offers an improvement over traditional
approaches that assumed the permitted mine area was the full extent of disturbance. We
found on average that 28% of a mine permit was disturbed at any particular time of

mining activity.



Introduction

This project investigated mountaintop removal mining with valley fills (MTR/VF)
disturbance mapping and the mapping of additional land cover in the Southern
Appalachian Coalfields of West Virginia as an input for modeling receiving stream
conditions. It was conducted using publically available, 1:10,000 scale National
Agriculture Imagery Program (NAIP) orthophotography, which was selected because it
was temporally and spatially appropriate for mapping the land cover and disturbance data
of interest. Due to compression, reduced spectral resolution, variable illumination, color
balance inconsistencies, shadowing, and the high spatial resolution of the data, we did not
pursue a purely image classification method. Instead, a combination of user-assisted
feature extraction, GIS overlay within ArcMap, and manual digitizing was used to
conduct the mapping. The resulting land cover and land use data along with additional
GIS data available in the region were summarized relative to 1:24,000 scale catchment
areas and used as predictor variables in modeling receiving stream conditions.

MTR/VF is the leading cause of land cover change in central Appalachia, including
the Southern Coal Fields of West Virginia (Palmer et al., 2010). Multiple West Virginia
watersheds have greater than 10% of their total area disturbed by surface mining as upper
elevation forested land cover is converted to barren, grasslands, or scrub/shrub land
cover. Reclamation commonly results in grasslands on the topographically altered
mountaintops, and in the past such sites have generally shown little or no regrowth of
woody vegetation and minimal carbon storage even after 15 years (Palmer et al., 2010). It

has been estimated that 1.05 to 1.21 million acres of the landscape has been disturbed by



surface mining within the Appalachian region; additionally, at least 500 mountaintops
have been altered by MTR/VF mining (Geredien, 2009Db).

Mountaintop mining has been shown to have a negative impact on terrestrial and
aquatic ecological community health, stream chemistry, surface runoff volumes, and
potentially human health (Hitt and Hendryx, 2010; Negley and Eshleman, 2006; Palmer
et al., 2010; Phillips, 2004; Petty et al., 2010; Pond, et al., 2008; Wickham et al., 2007).
For example, in an EPA (2002) survey of 78 streams affected by surface mining, 73 were
found to have selenium concentrations greater than the threshold for toxic
bioaccumulation. Paybins et al. (2000) linked declines in biodiversity with degree of
mining disturbance in West Virginia. Also, sulfate concentrations have been closely
linked to extent of mining in watersheds (Sams and Beer, 2000). Palmer et al. (2010)
found significant increases in metal concentrations and decreases in biological health in
mine impacted streams. If a model is to be developed that links stream chemistry and
biological health to environmental stressors, such as surface mining, accurately
describing the landscape stressors are essential to establish a relationship.

Quantifying and mapping MTR/VF mining disturbance has been proven to be
challenging. Prior to 2006, estimates of MTR/VF disturbance were often made using
permit boundary data; however, it is uncommon for the entire spatial extent of a
permitted surface mine to be disturbed at one time (Geredien, 2009a). Surface mining
and reclamation extents have also been extracted from Landsat MSS, TM, ETM+, and
SPOT data with varying degrees of success (Anderson and Schubert, 1976; Anderson et

al., 1977; Campagna, 2007; Irons and Kennard, 1986; Parks et al., 1987; Prakash and



Gupta, 1998; Rathore and Wright, 1993; Townsend et al., 2009; Yuill, 2003).
Appalachian Voices (unpublished, 2006) and Geredien (2009a) relied on manual
digitizing of disturbance features; as a result, remote sensing and orthophotography
interpretation have been investigated for surface mine disturbance mapping. We have
expanded on previous work by incorporating feature extraction methods to make use of
high spatial resolution imagery.

Methodology:

Orthophotography:

Imagery was obtained through download as compressed MrSid files from the West
Virginia GIS Technical Center as county datasets with a compression ratio of 15:1. The
most recent color infrared (CIR) orthophotography was collected in late summer 2007.
The data were originally published in February of 2008 by the Aerial Photography Field
Office of the Farm Service Agency, which is part of the U.S. Department of Agriculture,
and this data are currently publically available. The orthophotography has a 1 meter
nominal pixel resolution, a scale of 1:10,000, and is rectified to a horizontal accuracy of
within +/- 5 meters of reference digital ortho quarter quads from the National Digital
Ortho Program.

The most recent true color imagery was collected during leaf-on conditions in 2009,
published in October 2009, and made available to the West Virginia GIS Technical
Center in January 2010. The true color orthophotography also has a 1 meter nominal
pixel resolution, a scale of 1:10,000, and is rectified to a horizontal accuracy of within +/-

5 meters of reference digital ortho quarter quads from the National Digital Ortho



Program. CIR orthophotography was not made available in West Virginia by NAIP in
20009.
Study Area:

The MTR/VF region in West Virginia is shown in Figure 1. This region intersects 17
counties within the state and is estimated as 11,733 km? in area. Mapping was conducted
throughout this region at a 1 m cell size and on a county-by-county basis. In order to map
land cover throughout entire Hydrologic Unit Code (HUC) 8 watersheds, county sets
were combined. This paper will specifically make reference to mapping conducted in the
Coal River Watershed, a 2,308 km? HUC 8 watershed heavily disturbed by surface

mining.
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Figure 1: MTR/VF region in West Virginia and Coal River Watershed.



Overall Classification Method:

Figure 2 outlines the classification method used to create land cover data. This method
relies on user-assisted feature extraction and GIS overlay. First, land cover data was
extracted from the 2007 (CIR) and 2009 (true color) NAIP imagery as forested,
grasslands, or barren. Scrub/shrub areas were included in the grasslands class. Second,
the results were selectively combined as will be described below. Third, in order to
differentiate landscape disturbance within mine permits, West Virginia Department of
Environmental Protection (WVDEP) surface mine permit boundaries were utilized.
Fourth, ancillary water body data from the West Virginia Statewide Addressing and
Mapping Board (WVSAMB) were utilized to obtain the open water class. Rogan et al.
(2003), Bolstad and Lillesand (1992), and Homer et al. (2004) have documented the use
of combining ancillary GIS data with remote sensing data to increase thematic map
accuracy and to allow for the mapping of more detailed land cover. This process will be
discussed below, and Figure 2 describes the method. The following land cover classes
were of interest:

1. Forested

2. Grasslands/Pastureland/Agricultural Land

3. Barren/Developed

4. Forested in Permit (Not Disturbed)

5. Grasslands in Permit (Potentially Reclaimed)

6. Barren in Permit (Potentially Active Mining or Not Yet Reclaimed)

7. Open Water
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Figure 2: Classification method used.

User-Assisted Feature Extraction:
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The software tool Feature Analyst by Visual Learning Systems (VLS) was used within

Erdas Imagine to perform the user-assisted feature extractions. Three land cover types

were differentiated: forested, grasslands, and barren. In terms of surface mine permit

areas, barren areas may represent active mine sites or areas that have not yet been

reclaimed. Grasslands within mine permits may represent reclaimed mine lands. Forested

areas within mine permits would represent areas that had not yet been disturbed by

mining.

The land cover data was extracted from the 2009 and 2007 NAIP orthophotography.
Initially, only the 2009 true color data were classified; however, visual interpretation of

the results showed that this method often did not capture the entire spatial extent of



grassland areas, especially reclaimed mine lands. As a result, the most recently available
CIR orthophotography from 2007 was also classified, and the results were combined.
This was done to increase the accuracy of the grasslands class and assumed that
grasslands had not reverted to forested land cover in the two year period. The barren and
forested land cover classes were derived from the 2009 classification, and the grasslands
class was derived from a combination of the 2009 and 2007 result to make use of the CIR
data.

User-assisted feature extraction uses user-defined knowledge, as training data, to
recognize and classify target features in an image (Visual Learning Systems, 2002).
Feature Analyst uses machine-learning algorithms and techniques as object recognition to
automate feature-recognition from imagery (Visual Learning Systems, 2002). Unlike
supervised classification techniques, feature extraction classifies an image using more
than just the digital number (DN) or spectral information contained by each pixel. Spatial
context information such as spatial association, size, shape, texture, pattern, and shadow
are considered (Opitz, 2003). Studies have shown that feature extraction or object-based
algorithms are more effective and accurate at extracting information from high resolution
imagery than traditional image classification methods, such as supervised classification,
because additional image characteristics are considered such as spatial context (Friedl
and Brodley, 1997; Harvey et al., 2002; Hong and Zhang, 2006; Kaiser et al., 2004).

As the spatial resolution of an image increases, the spectral variance within a land
cover class also increases; as a result, it may not be appropriate to extract thematic data

from high resolution aerial imagery using processes developed for coarser resolution



satellite imagery (Carleer et al., 2005; Gong et al., 1992). Feature extraction takes into
account the spatial context that is available in high resolution imagery, such as NAIP
orthophotography. Due to the high spatial resolution and reduced spectral resolution of
NAIP orthophotography in comparison to satellite imagery traditionally used to obtain
thematic map data, we decided upon Feature Analyst as the classification tool in order to
make use of the spatial context information contained in the imagery.

Training Data Collection:

Training data were collected that appropriately represented the classification of
interest by manually digitizing training data using the orthophotography as reference
within ArcMap; for example, forested training data would include forested areas on all
aspects to take into account variable illumination due to topography. Because the imagery
was not perfectly color balanced, it was necessary to collect training data across entire
county extents to take into account the variability. Separate training data was collected
for the CIR and true color imagery. As an example, Table 1 describes the training data
collected from the 2009 true color data in Boone County, a county predominately within
the Coal River Watershed.

Table 1: Training data from 2009 true color NAIP orthophotography for Boone County.

Class Number of Training Polygons | Total Training Area
Grasslands 165 389,935 m?
Forested 147 4,738,141 m°
Barren 101 1,045,063 m?

10



GIS Overlay:

GIS overlay of ancillary GIS data available for West Virginia was used to refine the
land cover classes, and this was conducted in ArcMap. Two ancillary GIS datasets were
used to enhance the feature extraction results. First, the results were refined relative to
surface mine permit boundaries made available by WVDEP to classify land cover as a
result of surface mining. Although there is error associated with the available mine permit
polygon data, the researchers accepted this data as definitive boundaries in order
differentiate land cover resulting from surface mining. Second, WVSAMB water body
polygon data were added to the results to provide an estimate of open water land cover.
This data was extracted from 0.6 m cell size, 1:4,800 scale, leaf-off imagery collected in
2003, and the assumption was made that open water land cover had not changed
significantly over that time.

Manual Digitizing:

After experimentation with user-assisted feature extraction within the available
software and using the available orthophotography, we found that certain features of
interest could not be easily extracted. Valley fill faces are an example. In terms of land
cover and spatial context, valley fill faces are very similar to other types of reclamation;
as a result, they could not be adequately separated from other reclaimed areas. However,
an analyst can easily manually digitize these v-shaped, terraced slopes adjacent to mine
sites using high resolution aerial imagery. This is a task more suited for manual
digitizing. The feature extraction of generalized land cover was augmented with GIS

overlay and also manual digitizing.

11



Features that were manually digitized from the NAIP orthophotography are described
in Table 2. Digitizing was conducted at a base scale of 1:10,000 as this was the scale of
the NAIP imagery. A 500-by-500 m grid was created across mapping extents, and these
grid lines were used to guide the analyst through the imagery during the mapping process
within ArcMap. We made a minimum of three passes through the imagery to check
digitizing results.

Table 2: Manually digitized features.

Feature Description
Valley Fill
Faces

V-shaped, terraced slopes adjacent to mine sites

Ponds adjacent or within areas of surface mine

Slurry Ponds disturbance/often spectrally dark

Forestry with distinct boundaries/deforested areas surrounded
by forested land cover/evidence of access roads and landing
pads

Clear Cut
Forestry

Barren exposure induced by construction/predominantly road

Construction .
construction

Summarizing Data:

Once land cover was mapped, the data was summarized relative to 1:24,000 scale
catchment areas of which there are 4,229 within the Coal River Watershed. The Tabulate
Area function within the Spatial Analyst Extension of ArcMap was utilized to obtain the
area of each land cover class within each catchment area. The NHD Analyzer Toolbar,
another Arc extension developed by Dr. Sam Lamont and Vishesh Maskey of the West
Virginia University Natural Resource Analysis Center, was used to map cumulative
disturbance throughout the watershed extent. This process allowed for upstream

disturbance to be accumulated to downstream catchments. This resulted in a vector layer
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of 1:24,000 scale catchments appended with percentage of cumulative upstream land
cover and land disturbance that described the cumulative impact of mining disturbance
throughout the HUC 8 watershed.

Additional GIS data were summarized for the catchment areas such as National
Pollution Discharge Elimination System (NPDES) points and manmade structure point
locations. The number of such points upstream from and within each catchment was
characterized. Once this land cover data and additional variables were summarized and
accumulated relative to 1:24,000 scale catchments, they could be related to field
measurements of conductivity and benthic macroinvertebrate populations as predictive
variables. This was the primary use of the data. Landscape characteristics were related to
receiving stream conditions at the HUC 8 scale.

Results and Discussion:

The land cover data created for the Coal River HUC 8 Watershed using user-assisted
feature extraction and GIS overlay are described in Figure 3 and Table 3. Estimated
user’s accuracies for the three land cover classes obtained through feature extraction
ranged from 78% to 99%. Forested and barren land cover were mapped with accuracy,
but grasslands, including scrub/shrub land cover, were more difficult to extract and were
difficult to distinguish from forest. There is also error associated with the mine permit
and water body data utilized though this is difficult to quantify.

As Table 3 describes, 8.7% of the watershed was estimated as forested in mine
permits. As a result, if permit boundaries alone were used to estimate the extent of

mining disturbance, an overestimate of disturbance would be obtained. Within the Coal
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River Watershed, only 18.9% of permitted mine lands were predicted as barren while
31.3% was estimated as grasslands, or potentially reclaimed mine lands. Generally and
throughout the Southern Coal Fields of West Virginia, we found on average that 28% of a
mine permit was disturbed at any particular time of mining activity. As a result, utilizing

available imagery allowed for a more accurate estimate of mining disturbance extents.
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Figure 3: Land cover data for Coal River Watershed.
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Table 3: Final land cover data for Coal River Watershed.

Class Area (km2) Percentage of Watershed
Forested 1,684.2 km? 73.0%
Grasslands/Pastureland/Agricultural Land | 164.2 km? 7.1%
Barren/Developed 41.4 km? 1.8%
Forested in Permit 200.7 km? 8.7%
Grasslands in Permit 127.6 km? 5.5%
Barren in Permit 76.4 km? 3.3%
Open Water 13.1 km? 0.6%

An example of a manual digitizing result for valley fill faces is provided in Figure 4.
Manual digitizing from the 2009 true color imagery allowed for additional land cover and
landscape disturbance features to be mapped that were not spectrally or spatially
separable from other land cover types using the software and imagery available. Forestry,
construction, valley fill faces, and slurry ponds were manually digitized, and this data

provided additional landscape characteristics that could be summarized by 1:24,000 scale

catchments.
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Figure 4: Valley fill faces manually digitized from NAIP imagery.

Figure 5 described the cumulative percentage of upstream surface mine related
disturbance for the Coal River Watershed. This includes barren disturbance or active
mining, reclaimed mine lands, valley fills, and slurry ponds. Summarizing and
accumulating the data relative to 1:24,000 scale catchment areas allowed the data to be
utilized as predictive variables in modeling receiving stream conditions. Although this
paper will not specifically discuss the receiving stream modeling in which this data was
utilized, it was found that this mapping method provided an adequate representation of

the landscape for the modeling purposes.
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Cumulative Mining Disturbance
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Figure 5: Cumulative mining disturbance in Coal River Watershed.
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Conclusion:

NAIP orthophotography provided adequate temporal and spatial resolution to conduct
mapping of land cover and landscape disturbance in the Southern Coal Fields of West
Virginia; however, obtaining thematic map data from this orthophotography was
complicated by compression, reduced spectral resolution, variable illumination, color
balance inconsistencies, shadowing, and the high spatial resolution of the data. The
researchers found that generalized land cover could be differentiated using user-assisted
feature extraction and GIS overlay.

Certain features of interest could not be adequately mapped using user-assisted feature
extraction, the available software, and the available orthophotography. One example is
valley fill faces, which are easily manually digitized but difficult to separate spectrally
and spatially from other reclaimed mine lands. Augmenting feature extraction results
with manual digitizing was necessary in this research to obtain all data of interest, and
NAIP imagery provided an appropriate mapping scale.

Although NAIP orthophotography is not optimal for extraction thematic map data,
adopting a method that utilized user-assisted feature extraction, GIS overlay within
ArcMap, and manual digitizing allowed for mapping results that met the needs of the
project. Landscape disturbance and additional variables were mapped that could be
related to receiving stream conditions at the HUC 8 watershed scale. This method
allowed for publically available, high resolution, temporally appropriate data to be

utilized to map a landscape that is experiencing accelerated disturbance and change.
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photography | 2007 | Infrared | Grasslands variability of the land cover

classes
*  1mnominal pixel spacing Class Number of Training | Total Training
- . Polygons Area

5:;?13 or\lqlglz?cdidhggsm «  Publically available &
form: a}; from West * Rectified to a horizontal accuracy of Gorested 165 389,935 m?

A . +/- 5 meters of reference digital Grasslands 147 4738141 m?
Virginia GIS Technical ortho quarter quads Barren 101 1,045,063 m?
Center.

« 1:10,000 Scale




User-Assisted Feature Extraction

» Feature Analyst by
Visual Learning
Systems

» Makes use of spectral
and spatial attributes
of data

* May need to clean up
results by

manipulating training

data
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What is Feature Extraction?

User-Assisted Feature Extraction uses Advantages we have found:
user-defined knowledge, as training
data, to recognize and classify target 1. Appropriate for imagery
features in an image. Machine- scale (1:10,000)
learning algorithms and techniques 2. Reproducible results

serve to automate the feature-
recognition process.

Advantages:

1. Notas labor intensive or time
consuming as manual
digitization (Blundell and Opitz)

2. More accurate than traditional
classification techniques (Gong
etal., 1992)

GIS Overlay

* GIS Overlay is used to
combine thematic map data
and ancillary GIS data to
further distinguish land cover
classes

* The adjacent thematic map
was produced using the
following input data

+ 2009 true color NAIP
Imagery

« 2007 CIR NAIP Imagery

« Manually digitized
training data

* WVDEP surface mine
permits

* SAMB water body
polygons
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Visual Learning Systems Feature Analyst
for Detection of MTR/VF Disturbance
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“Using spectral information and
feature characteristics such as
spatial association, size, shape,
texture, pattern, and shadow in
user-identified feature
examples, Feature Analyst
learns to recognize

and classify targeted features in
an image.”

- Feature Analyst Users Manual eature Analyst

Previous studies have shown that feature extraction tools/algorithms are more effective and accurate at extracting
information from aerial imagery than traditional image classification algorithms that only rely on spectral values
(Gong etal., 1992; Harvey et al., 2002; Fried| and Brodley, 1997).

GIS Overlay Analysis: . .

« Performed in ArcMap
* Makes use of:
* Raster Calculator
«  Vector-to-Raster
Conversion
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* Mosaic 5
* Reclassify -
* Manipulate land cover — F
data as integer raster .‘ T
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Coal River Watershed

o] Percentage of
Class Avea k)| L
Forested 1,684.2 km 73.0%
[Grasslands/Pastureland/Agricultural
and 164.2 km? 1%
arren/Developed 414 km” 8%
orested in Permit 200.7 km? 7%
Grasslands in Permit 127.6 ki 5%
arren in Permit 76.4 km” 3%
Open Water 13.1km” 6%

Beckley, WV

Manual Digitizing in ArcMap

+ Certain features of interest il I8 [ W s race T pes wiBce mrersies
were difficult to separate sy panaa] PO adacentorwihin ares ofsuace mne
k spectrally dark
spectrally and spatially Clear Cut_|FOreStY with distinct boundariesieforested areas surounded|
fl'Om the NAIP |magew Forestry by forested land CDVEr/EV\dE:::SDf access roads and landing
B Baren exposure induced by constuctorprecominanty road
«  These features were corsreten

manually digitized using the
imagery and feature
extraction results as a guide

« 1:10,000 base digitizing
scale, though researchers
did digitize at a finer scale

Raleigh County, WV

Accuracy of Remote Sensing Data

1. Remote sensing error was assessed in Boone County
using 600 randomly selected circular areas (15 m radius)

2. Total area: 421,432 m?

3. Points were randomly selected in Hawth’s Tools

4. Majority classification was determined using the Spatial . )
Analyst Extension in ArcMap

5. The majority class was then manually interpreted from Ap p Iyl ng Data fo r M Od el I ng
the imagery

6. Method takes into account mapping scale and
aggregation

7. The K Coefficient of Agreement was calculated as 86%

Reference Data
Majority (Pixel Based)

User's

Forested [Grasslands| Barren | Row Total [ , >

Forested 198 1 1 200 99%
Remote Sensing Datal Grasslands 2 165 10 200 83%
Baren 3 17 180 200 90%

Column Total 226 183 191 600

- Overall
Producer's Accuracy | 88% 0% | 95% s




e B N Land Cover Data for MTR/VF
1l Region

1. High resolution forest cover
2. Forest fragmentation (Vogt
etal., 2007)
3. Critical forest
1. Steep Slopes
2. Riparian Areas
3. Landform
4. Headwater
Watersheds
5. Soil Productivity
6. Contiguous
4. Terrestrial habitat models
1. Bird community index
2. Louisiana Waterthrush
3. Amphibian/Reptile
habitat

Upper Guyandotte
Watershed

After Vogt et al., 2007
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Ecological Land Units

10: Cliff

11: Steep Slope
12: Slope Crest
13: Upper Slope
14: Flat Summit
20: Sideslope
21: Cove

30: Dry Flat

31: Moist Flat
32: Wet Flat

33: Slope Bottom
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Modeling by 1:24,000 Scale Stream
Segments
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Current Conditions:

Conductivity Conclusions

Mined sites: R?=0.84; p <0.0001.

Estimate | R
Intercept 3208
%5 11597 | 046
NPDES 2037 | 03
Developed sites: R2=0.51, p =0.079.
Estimate | R
Intercept 1153
sism 152507 | o015
200M Structures. 468 0.13
NNPDES 186.21 0.23

Combined sites: R2 =0.85; p <0.0001

Estimate [
Intercept 1229
RV} 2084 | 076

NPDES 1603 009

I «Slide courtesy of Eric Merriam and I

Dr. Todd Petty




