Using Hot-Spot Analysis to Target Women, Infant and Children Services

Thomas J. Stopka, Kate Cordell Zipora Weinbaum Christopher Krawczyk and Pat Gradziel

Presenter: Thomas Stopka, MHS
Research Specialist
University of California, San Francisco,
Department of Social Behavioral Sciences
Institute for Health and Aging

Esri International User Conference July 13, 2011 10:15 a.m.-11:30 a.m. Room 29D

Acknowledgements

- California Department of Public Health, MCAH
 - Chris Krawczyk, PhD
 - Mike Curtis, PhD
 - Kate Cordell, MPH
 - Zipora Weinbaum, PhD
- California WIC Program
 - Michele van Eyken, MPH, RD
 - Pat Gradziel, PhD, RD
 - Barbara Longo, MS, RD
 - Charlene Manning
- UC Davis Mentor in GIS and Spatial Analysis:
 - Estella Geraghty, MD, MS, MPH/CPH

Overview

- Background
- Study Questions
- Methods
- Results
- Discussion

Background: WIC

- Special Supplemental Nutrition Program for Women, Infants and Children (WIC)
 - Provides health education
 - Supplemental food vouchers
- Approximately 1 of 4 pregnant women and roughly 50% of all infants born in the U.S. participate in WIC
- Almost 51% of pregnant women enroll in WIC during 1st trimester
- In California, WIC agencies provide services locally to nearly 1.45 million women, infants and children each month at 650 sites.

Background: Need for GIS and Spatial Analysis in Good Times and Bad...

- "Association of Maternal & Child Health Programs Opposes Major Funding Reduction to Women, Infant and Children (WIC) Program"
 - House Agriculture Appropriations Subcommittee marked up a FY 2012 Agriculture Appropriations bill and included an \$832 million funding reduction
 - Up to 500,000 low-income women and children would be denied services
 - Spatial analyses can help monitor impacts over time

Study Questions

 Where are statistically significant clusters of WIC eligible women* located California?

 Where do micro-level clusters of WIC eligible women exist within counties?

*WIC eligible women: Received MediCal during pregnancy (i.e., WIC eligible) but did not receive WIC services

Data

- Multi-step algorithm to merge 2 large data sets
 - Birth Statistical Master File for live births in CA in 2009 (N=518, 244)
 - 2009 WIC-ISIS data file (N=257,955)

- Outcome of interest:
 - Women on MediCal (i.e., eligible for WIC) but not receiving WIC services (N=23,147)

Women on MediCal Not Receiving WIC Services California Medical Service Study Areas (MSSAs), 2009

Questions:

 How do we know that these patterns are not due to chance alone?

 Where are statistically significant clusters of WIC eligible women located in California?

— Hint: We need to conduct hot-spot analyses to find out!

Methods: Hot-Spot Analysis

Getis Ord Hot-Spot Analysis (Gi*)

- Spatial analysis tool
- Used to pinpoint locations of clusters
 - Looks at each feature within the context of neighboring features. A
 feature with a high value is a statistically significant hot spot if it is also
 surrounded by other features with high values.
 - The local mean for a feature and its neighbors is compared proportionally to the "global mean" of all features.
 - When the observed local mean is much different than the expected local mean, and that difference is too large to be the result of random chance, a statistically significant Z-score results.

Methods: Hot-Spot Geoprocessing Tasks

1) Calculate area for polygons (e.g., census tracts) and select areas that are < 1.5 SD below the mean;

- 2) Find the appropriate spatial scale for selected tracts (i.e., distance from each tract to 2 nearest neighbors)
 - Starting Distance
 - Incremental Distance

Methods: Hot-Spot Geoprocessing Tasks

- 3) Conduct incremental spatial autocorrelation analysis (Moran's I)
 - Determine multiple distances at which clustering peaks
 - Find distance of first statistically significant peak (Z-score; p-value)

4)Generate a spatial weights matrix file to assess the spatial connectivity of polygons (i.e., census tracts) included in analyses

5)Conduct hot-spot analysis

Determine location of statistically significant clusters

Methods: Hot-Spot Analysis

- Clusters we wish to pinpoint
 - Statistically significant clusters of WIC eligible women across the state
 - Significant clusters of WIC eligible women within selected counties

Results

- P-values and Z-scores (map layer)
 - Larger Z-score, more intense the clustering of high values (a hot-spot)
 - Smaller Z-score, more intense the clustering of low values (a cold-spot)

Results: Statewide Hot-Spot Analyses

Hot-Spot Clusters: Density of WIC Eligible Women California Census Tracts, 2009

Zoom to Sacramento

Results: County-Specific Hot-Spot Analyses

Results

- The 5 geoprocessing steps for hot-spot analyses provided a systematic, rigorous, and objective approach
- State level hot-spot analyses helped locate statistically significant clusters of WIC eligible women in key CA counties
- County level hot-spot analyses allowed us to locate clusters of highest WIC need on the local level
- Findings helped inform WIC program and funding decisions on the state and local level

Discussion

- Limitations
 - Focused on women alone (not infants and children)
 - Time lag
- Public Health Implications:
 - Hot-spot analyses provided objective method to guide funding decisions
 - Similar analyses can be conducted for other programs to target services
 - Need for GIS and spatial analyses in good times and bad...
- Next Steps
 - Additional hot-spot analyses
 - Statistical modeling
 - Analyses of WIC eligible infants and children

For More Information

- Contact
 - Tom Stopka:
 - tom.stopka@cdph.ca.gov
 - tjstopka@ucdavis.edu

