Using GIS and LiDAR to Reduce Costs in Monroe County

Justin D. Cole, MS, GISP
Senior GIS Analyst
Monroe County, NY

July 5, 2011
Agenda

- Background of the GIS Division and how we fall into whole Monroe County Government
- Monroe County LiDAR and how we made it usable for GIS users
- Problems with Surveyors and the GIS data
- How we solved their problems to allow for the data to be used
- How the data is reducing costs
Background of the GIS Division

- Division started in 1999 with Parcels
- The division is within Environmental Services, which primarily deals with the Rochester Sewer System
- Supports all other departments
Background of the GIS Division

► Division started in 1999 with Parcels
► The division is within Environmental Services, which primarily deals with the Rochester Sewer System
► Supports all other departments
Monroe County LiDAR and how we made it usable for GIS users

► The LiDAR data was collected in 2006 as part of a grant from FEMA’s map modernization program
► The data format predates the acceptance of the ASPRS Las format
► When the data was delivered it was only the ASCII tables
► It took over a year to get the data usable for the County GIS
► Need 3D analyst for all of these steps in ArcGIS for Desktop
What does the Raw Data Look Like

<table>
<thead>
<tr>
<th>EASTING</th>
<th>NORTHING</th>
<th>ELEVATION</th>
<th>INTENSITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>1355800.01000000000</td>
<td>1127581.62999999000</td>
<td>561.840000000000000</td>
<td>66</td>
</tr>
<tr>
<td>1355800.02000000000</td>
<td>1125511.54000000000</td>
<td>534.510000000000000</td>
<td>56</td>
</tr>
<tr>
<td>1355800.02000000000</td>
<td>1125728.90999999000</td>
<td>546.260000000000000</td>
<td>48</td>
</tr>
<tr>
<td>1355800.02000000000</td>
<td>1127122.34000000000</td>
<td>563.890000000000000</td>
<td>70</td>
</tr>
<tr>
<td>1355800.03000000000</td>
<td>1126544.83000000000</td>
<td>564.990000000000000</td>
<td>53</td>
</tr>
<tr>
<td>1355800.04000000000</td>
<td>1125108.12999999000</td>
<td>532.590000000000000</td>
<td>21</td>
</tr>
<tr>
<td>1355800.04000000000</td>
<td>1125284.62000000000</td>
<td>534.080000000000000</td>
<td>29</td>
</tr>
<tr>
<td>1355800.04000000000</td>
<td>1125836.62000000000</td>
<td>549.450000000000000</td>
<td>36</td>
</tr>
</tbody>
</table>

The average size of one of these tables are 13 Million records
Monroe County is broken down to 509 tiles each comprising just over 1.5 square miles.
Monroe County LiDAR and how we made it usable for GIS users

► We ended up using the new Terrain model in 9.2
 - Pyramid Based Triangular Integrated Network Model
 - Great for rendering
 - Initially could not be analyzed
 - Must convert to raster

► But it could handle all of the data
Processing Points to Terrain

► Need **Point Spacing** for each area
► This is done using the Point File Information Tool
► Once you have the file click identify or preview the table and get the average point spacing
Processing Points to Terrain

- Need **Point Spacing** for each area
- This is done using the Point File Information Tool
- Once you have the file click identify or preview the table and get the average point spacing
Next you need to convert the tables to a multipoint feature using ASCII 3D to Feature Class

The Point Spacing is required

Once you have you multi-points in a Feature Dataset you can create a terrain
Processing Points to Terrain

1. Click on a feature dataset and new -> terrain
2. Enter your point spacing (any multipoint feature class will be already loaded)
3. Then confirm your dataset
4. Set your pyramid levels (I use z tolerance and let the computer decide for me)
5. Then Finish
Processing Points to Terrain

- Click on a feature dataset and new -> terrain
- Enter your point spacing (any multipoint feature class will be already loaded)
- Then confirm your dataset
- Set your pyramid levels (I use z tolerance and let the computer decide for me)
- Then Finish
Processing Points to Terrain

► Click on a feature dataset and new -> terrain
► Enter your point spacing (any multipoint feature class will be already loaded)
► Then confirm your dataset
► Set your pyramid levels (I use z tolerance and let the computer decide for me)
► Then Finish
Processing Points to Terrain

► Click on a feature dataset and new -> terrain
► Enter your point spacing (any multipoint feature class will be already loaded)
► Then confirm your dataset
► Set your pyramid levels (I use z tolerance and let the computer decide for me)
► Then Finish
Processing Points to Terrain

► Click on a feature dataset and new -> terrain
► Enter your point spacing (any multipoint feature class will be already loaded)
► Then confirm your dataset
► Set your pyramid levels (I use z tolerance and let the computer decide for me)
► Then Finish
Processing Points to Terrain

- Click on a feature dataset and new -> terrain
- Enter your point spacing (any multipoint feature class will be already loaded)
- Then confirm your dataset
- Set your pyramid levels (I use window and let the computer decide for me)
- Then Finish
- After creating the terrain let it build
Processing Points to Terrain

► Click on a feature dataset and new -> terrain
► Enter your point spacing (any multipoint feature class will be already loaded)
► Then confirm your dataset
► Set your pyramid levels (I use window and let the computer decide for me)
► Then Finish
► After creating the terrain let it build
Terrain to Raster

- Conversion Tools -> From Terrain -> Terrain to Raster
- Save the raster anywhere (if you want a tiff save to a file with .tif at the end)
- Make sure you set your cell size to the ground sampling size
Raster Derivatives

- Once in a Raster you can create contours, hill shades, or any other product you may need.
- Contours can be generated to any value but the data is rated to a maximum of 2ft.
- Any Contour less than 2ft is suspect to increased error and can result in too much data to be displayed.
Problems with Surveyors and the GIS data

- The surveyors that we have on contract cannot handle the sheer size of the data.

- They are using an AutoCAD type program which converts the contours and they try to display only their area.

- The raw point tables are too dense for them to make a layer on their own system.

- And they cannot work with the Raster elevations.
Problems with Surveyors and the GIS data

► So after many meetings of them trying to ask for everything only not to be able to use it, I got them to tell me what they needed to work with the project.

► I made two tools to clip or extract the data.

► The Clip tool regenerates the data into a smaller raster and can create contours at their needed interval.

► The other is a tool for spot elevations.

► These tools were first created in 9.3.1 and work the same in 10 with only one change.

► ArcGIS 10 can also use the terrain data for interpolating spot elevations.
The LiDAR Clip Tool

► Due to the size of the LiDAR there are two main tools that help with the extraction of the data.

► For a clipping of LiDAR data there must be a projected polygon area of interest (AOI) with a value of 1 for the area needed (preferably in State Plane NAD 1983 New York West Feet 3103).

► The polygon is then inserted into a tool and it generates the clipped LiDAR.

- With the tool you can have any logical contour interval.
The LiDAR Clip Tool
Spot Elevations Tool

► For spot elevations you need a table of coordinates
► Then using the tool the computer can plot the points and then fill in the elevations
► This is handy when you have predefined transects and want to compare the data to survey data
► In 10 you no longer need the VB script to extract the elevations, you can now calculate z values right from the tool box
Spot Elevations Tool
Example of Spot Elevations
How this is reducing costs in Monroe County

► Now all Transportation, Sewer, and Water project has a pre-survey done with the LiDAR
► Areas where the LiDAR is unsure (tree covers, edge of structures, under water, etc.) are surveyed as well as spot checks on the LiDAR itself
► Plans and cost analysis can be run in a few days instead of a few weeks of the surveyor’s time
► The Project manager can better estimate the amount of work needed for a projects thus reducing waste
Questions
Justin D. Cole, MS, GISP
585-753-7504
jcole@monroecounty.gov