Evaluating Point Clouds – LiDAR and UAV's

William Shuart, M.S.¹
John Anderson, Ph.D.²

¹Center for Environmental Studies and Rice Rivers Center at Virginia Commonwealth University http://ces.vcu.edu http://ricerivers.vcu.edu

² Army Corps of Engineers Geospatial Research Laboratory http://www.erdc.usace.army.mil/Locations/GRL/

UAS Market

Advantages of UAV systems for data collection

- Unparalleled temporal and spatial resolutions
- Inertial measurement unit (IMU) and GPS
 - Logging, attitude, location (L1, L2, GLONASS, RTK, PPK)
- Flexible deployment
 - Relatively simple operation
- Potential for very rapid data acquisition and processing
 - Find your errors "quickly"
- System! Closely tied hardware and software
- FAA Rule Changes
- Accelerated sensor development
 - Parrot Sequoia

Remote Sensing Paradigm

Everyone wants "good" data...

Remote Sensing Platform	Typical Spatial Resolution (GSD)	Typical Field- of- View (FOV)
Free Satellite (Landsat)	15-30m	50-250km
Satellite (Quickbird, WV2,3)	1-10 m	10-50 km
Aircraft (piloted)*	0.2-2 m	2-5 km
Miniature UAV	1-20 cm	50-500 m
Ground-based Scanning	< 1 cm	<2m

Wetland Applications of UAV Technology

- Sea Level Rise
- Tidal Fluctuations
- Wetlands Credits
- Erosion
- Stream Channel Change
- Vegetation Growth
- Vegetation Health
- Community Change
- Storm Damage

Landsat 8 OLI

Accurate elevation...

UAV Products

VS

LIDAR

- Aerial Imagery
- Spectral Imagery
 - IR/Red-Edge, etc.
 - Indices (NDVI)
- Digital Surface Model
- Point Cloud
 - LAS/LAZ, etc.
 - "First return" LiDAR

- Point Cloud
 - Multiple Returns
 - First, Last, etc.
 - Classified Returns
 - Vegetation, etc.
 - Digital Surface Models
 - Bare earth/Elevation
- Intensity

UAV Product Example

Green Roof

LiDAR in Wetlands

- Terrestrial Scanning
 - High density get high

- Airborne Scanning
 - Choose your density be rich

Conceptual Diagram

- First Return Lidar Pulse
- Digital Surface Model
- Point Cloud (UAV)

What does your MMU require? Accuracy and precision?

Challenges for UAS/UAV data implementation

- Non-metric cameras providing imagery
 - ISO, Settings, etc.
- Sensor calibration
 - Histograms, Camera Settings, etc.
- Nadir Gimbal vs Pitch, Roll, and Yaw.
- Orthomosaic, Surface Models, Point clouds
- How do we integrate these data along with APSRS standardized products?
 - E.g. 1ft contours at NAVD88 (MSL)?
 - Support for vertical datum
 - Lack of geodetic control

Project Goals:

- Compare results of two different survey grade microUAS technologies using:
 - Raw onboard GPS and flight logs
 - Integration and use of ground control points
- Compare traditional and unique photogrammetric and remote sensing derivatives with UAV derived products
 - Geodetic Control
- Do different features and land cover types give the same vertical measurements?
 - Lidar vs UAV

Hardware:

senseFly eBee RTK

- Global Navigation Satellite Systems
 - L1/L2 GLONASS GPS Receiver
- RGB, NIR, Red-Edge Cameras
 - Sony/Canon 18mp, 3cm/5cm 6-7 Seconds
- Fully Autonomous 16mps
- 1.5 lbs, ~30 min endurance
- SmartPlane Freya
 - Very Customizable and rugged
 - 45-50 minute endurance, 20mps
 - Post Processed GPS (PPK)
 - Ricoh GR 16.2 0.7 seconds

Trimble NetR9 Kinematic Base Station

Study Site Locations

- VCU Rice Rivers Center
 - LiDAR (1550nm 2011, USGS 2012, CZMIL 2013)
 - LiDAR (1550nm 2012 Mast/Terrestrial)
 - senseFly eBee RTK (2016)
 - 3DR Solo GoPRO Hero (in process)
- NOAA Geodetic Survey, Woolford, Virginia
 - LiDAR (1550 2013)
 - senseFly eBee RTK
 - senseFly eBee
- Cumberland, Maryland
 - LIDAR (USGS 2013 FEMA)
 - SmartPlane Freya (Jan 2016)

UAV Workflow

Process Imagery Pix4D Agisoft Drone2Map

Create DSM

NOAA VDATUM

Where applicable

Compute Zonal Statistics on 1m grid

Add ground control points from Trimble R9 Base station

Featureclass

Results

Method comparison

Method	Cost/Time	Processing Time	Area Size	Resolution
Terrestrial LiDAR	12 Hours (\$190k)	4 hours ¹	30 acres	2cm/200hz
Aerial LiDAR	18 Hours (\$20,000)	2 weeks delivery	350 acres	2cm/200hz
Micro UAS SmartPlane	4 hours (\$30,000)	8 hours ²	200 acres	3cm
Micro UAS senseFly eBee	4 hours (\$50,000)	8 hours ³	160 acres	5cm
Micro UAS – 3DR Solo multirotar	2 Hours (\$1,500)	2 hours ^{4,5}	30 acres	2cm
1 RiScan – Riegl 2 Agisoft 3 Pix4D 4 Drone2Map 5 Results pending				

NOAA – National Geodedic Survey – Corbin, VA

- Stand alone VRS
- Trimble Base Station
 - Ashtech/Trimble
 - Horizontal Accuracy was 0.8 vs Base Station

RTK NIR ORTHO

USACE EBEE RGB ORTHO TARGET POINT

RTK NIR ORTHO TARGET POINT

X TAPE REFERENCE POINT IN RTK NIR ORTHO

OPUS POINT

SmartPlane UAS vs LiDAR

Location: Cumberland, Maryland

Stand alone L1/2 GPS with no ground control

UAV DSM Value vs LiDAR DSM Value SmartPlane UAV vs USGS LiDAR 1/18/2016

Flight Plan and Results

Digital Surface Model and Point Cloud

LiDAR DSM vs UAV DSM senseFly eBee RTK Building and Surrounding Area

LiDAR DSM vs UAV DSM senseFly eBee RTK Wetland Cover Type

Digital Surface Model VS LiDAR Surface

5 Ground control points were placed in the scene to help the autocorrelation and bundle Adjustment.

Digital Surface Model (UAV) vs LiDAR Surface Model – with ground control

Displaying differences in DSM vs LiDAR Surface

- -5.13 -3.46
- 0 -3.45 4.66
- O 4.67 6.22
- 06.23 7.69
- 7.70 9.21

Results

- senseFly eBee RTK performed closer to OPUS solution compared to non-RTK
 - Better geodetic control
- SmartPlane Freya underestimated elevation
 - Ground control needed (PPK GPS)
- Elevation derived by senseFly eBee RTK explained 85% of the variation in USGS LiDAR elevation surface model
- Elevation derived by senseFly eBee RTK in wetland area explained 94% of the variation in USGS LiDAR elevation surface model
- Introducing ground control increased the explanatory power by 10%.
- Drone2Map took 8 minutes less to produce the same orthomosaic (rapid) vs Pix4D

Conclusions

- UAV derived elevation products could be used in surrogate of LiDAR, but altitude, attitude, and GPS are controlling variables
- Elevation surface models can differ because of "holes" in canopy, users should display where differences occur.
- Don't fire your surveyor ground control is still needed especially internal UAV GPS
- Matching vertical datums (NAVD88, GEOID12a, etc.) is critical
 - Support for vertical in 10.4
- Choose a platform that can combine mission planning and piloting to ensure data capture
- Flying perpendicular

Acknowledgments

- Virginia Commonwealth University
 - Center for Environmental Studies
 - VCU Rice Rivers Center
 - Edward Crawford, Ph.D.
- US Army Corps Geospatial Research Lab
 - Robert Fisher, Ph.D., Richard Massaro, Ph.D., Jeffrey Ruby, Ph.D., Jarrod Edwards, MS
- NOAA Corbin, VA Jason Woolard
 Caron-East
 - Mike Clites, John Irving, Chris Robson
- senseFly