Analyzing and Visualizing Precipitation and Soil Moisture in ArcGIS

Wenli Yang, Pham Long, Peisheng Zhao, Steve Kempler, and Jennifer Wei

NASA Goddard Earth Science Data and Information Services Center

The 2016 ESRI User Conference, San Diego, CA, June 27 - July 1
Objective

- Introduce hydrological data available from the NASA Goddard Earth Science Data and Information Services Center (GES DISC)

- Demonstrate the use of GES DISC data in ArcGIS to visualize and analyze events like drought, and flood and climate/vegetation relationships.
The Uniqueness of NASA GES DISC Data

Atmospheric Composition
- Total Ozone Mapping Spectrometer (TOMS)
- Upper Atmosphere Research Satellite (UARS)
- Solar Radiation and Climate Experiment (SORCE)
- Aura: Ozone Monitoring Instrument (OMI), High Resolution Dynamics Infrared Sounder (HIRDLS), Microwave Limb Sounder (MLS)
- Atmospheric CO2 Observations from Space (ACOS)
- Historical datasets from Nimbus, Tiros, SME, others
- Orbiting Carbon Observatory 2 (OCO-2)
- SNPP Ozone Mapping & Profiler Suite (OMPS)
- Carbon Monitoring System (CMS)
- Total and Spectral Solar Irradiance Sensor (TSIS)
- Sentinel 5 TROPOMI

Atmospheric Dynamics
- TIROS Operational Vertical Sounder (TOVS)
- Aqua: Atmospheric Infrared Sounder (AIRS)
- SNPP: CrIS

Precipitation
- Tropical Rainfall Measuring Mission (TRMM)
- Hydrology Collections
- Global Precipitation Mission (GPM)

Modeling
- Modern-Era Retrospective Analysis For Research and Applications v2 (MERRA 2)
- Global Land Data Assimilation System (GLDAS)
- North American Land Data Assimilation System (NLDAS)

MEaSUREs
- MEaSUREs 2006
- MEaSUREs 2012
Characteristics of GES DISC Hydrology Data

- Remote sensing, in-situ, modeling, and forecast
- Multiple spatio/temporal resolutions:
 - Half-hourly, 3-hourly, daily, monthly satellite measurements
 - Hourly modeled products
 - Monthly ground observation archives
 - Composite Climatology (yearly, monthly)
 - Near real-time (NRT) products
 - Global grids (raster) with spatial resolution up to 10-km
 - Higher resolution swath (feature points) data (e.g., 4-km)
Events & Data & Methods

- Events
 - The 2015 south India flood
 - The ongoing California drought
 - The 2010-2011 East Africa drought

- Data
 - 0.1 deg resolution precipitation from the Global Precipitation Measurement (GPM) Mission
 - 0.25 deg resolution precipitation from the Tropical Rainfall Measurement Mission (TRMM)
 - 0.125 deg resolution root zone soil moisture from the North America Land Data Assimilation System (NLDAS)
 - 0.1 & 0.25 deg soil moisture from the Land Parameter Retrieve Model (LPRM)
 - 5 km resolution NDVI from MODIS
 - 0.625x0.5 deg resolution MERRA2

- Methods:
 - Visualize time series using ArcMap time slider
 - Anomalies derived from time series data
 - Water Basin-based analysis (zonal statistics/time series)
Event
The 2015 south India flood
High Spatiotemporal GPM Data for Storm and Flood Visualization and Analysis

South India Flood – 2015 Northeast Monsoon

Daily GPM Precipitation, Nov. 7-10 and 14-17

Nov. 7
Nov. 8
Nov. 9
Nov. 10
Nov. 11
Nov. 15
Nov. 16
Nov. 17

0 12.5 25 mm/hr
South India Flood – 2015 Northeast Monsoon

Half Hourly GPM Precipitation, 4:30pm Nov. 8 – 4:00am November 9
Event
The California drought
GEOS DISC data are available in various GIS formats, including NetCDF within which a time dimension can be defined.

- Time enabled NetCDF data can be easily visualized in ArcGIS.

- A common method to find temporal feature is using standardized anomaly:

\[A = \frac{X - X_m}{X_s} \]

- \(A \): standardized anomaly
- \(X_m \): long term mean (for a calendar month, year, etc)
- \(X_s \): standard deviation to the long term mean
- \(X \): measurement for a particular period (month, year, etc)
California Drought since 2013
Negative anomaly in CA: 2013 Jan-Feb
TRMM Precipitation and LPRM Soil Moisture
TRMM Precipitation Anomaly - 2015

January

February

March

April

May

June

July

August

September

October

November

December
GPM Precipitation Anomaly - 2015

Maps show the distribution of precipitation anomalies across the United States for each month of 2015.
GPM Precipitation Anomaly vs SPI - 2015

Acknowledgement:
SPI images are screen-copied from the West Wide Drought Tracker Web site of the Western Regional Climate Center: http://www.wrcc.dri.edu/wwdt/archive.php
Event
The 2010-2011 East Africa drought
Water Basin-based Analysis

- Raster data often analyzed with point and polygon features
- Zonal statistics analysis in level 3 world water basins
- Visualize time series feature data
 - Import zonal statistical table into polygon shapefile (dbf)
 - Simple python scripts
Visualize the zonal anomaly time series with simple script

```python
sm_lyr.visible=0
def rain(date):
    rain_lyr.symbology.valueField = date
    rain_lyr.symbology.reclassify()
    rain_lyr.visible=1
    sm_lyr.visible=0
    arcpy.RefreshActiveView()
    rain('2016_01')
start_year = 1998
end_year = 2016
for year in range(start_year,end_year):
    for month in range (1,13):
        rain_lyr.symbology.valueField =
            'D'+'%4d'%(year)+'_'+'%02d'%(month)
        rain_lyr.symbology.reclassify()
        arcpy.RefreshActiveView()
        time.sleep(2)
end_year = 2016
```
Relationship between Precipitation and Vegetation: East Africa Drought

- 16-day composites of precipitation and NDVI from Jan. 2010 to Dec. 2011
- All water basins exhibits statistically significant precipitation/NDVI correlation when one or two time period lags are applied to NDVI data.
TRMM Precipitation and LPRM Soil Moisture Anomalies - 2011

Zonal statistics within level 3 water basin
Access GES DISC Hydrology Data

- All GES DISC hydrology data accessible online through interoperable services, such as OPeNDAP and OGC WCS/WMS data servers.
- The Giovanni system is an easy online visualization, analysis, and access portal.

http://giovanni.gsfc.nasa.gov/giovanni/

- A subset of Giovanni served parameters

![Giovanni System Screenshot](image-url)
GES DISC Hydrology Data for Drought Systems

- GES DISC hydrology data are widely used in GIS communities
- UC Irvine’s Global Integrated Drought Monitoring and Prediction System (GIDMaPS)
 - MERRA
 - GLDAS
 - GPCP
 - NLDAS

Picture screen-copied from http://drought.eng.uci.edu/
Summary and Future Directions

- GES DISC’s multi-spatiotemporal hydrology data are valuable in drought and flood applications.
- The data can be easily visualized and analyzed in ArcGIS.
- The latest ArcGIS analysis and visualization capabilities such as Big Data Store, GeoEvent, and AGOL will make GES DISC data be more efficiently explored.
Question?

Wenli.Yang@nasa.gov
Jennifer.C.Wei@nasa.gov