BUS TRANSIT OPERATIONAL EFFICIENCY RESULTING FROM PASSENGER BOARDINGS AT PARK-AND-RIDE FACILITIES

John Niles
Global Telematics
4005 20th Ave West, Suite 111
Seattle, WA 98199
Tel: 206-781-4475
Email: jniles@alum.mit.edu

J.M. (Mike) Pogodzinski
Department of Economics (0114)
San Jose State University
1 Washington Square
San Jose, CA 95192-0114
Tel: (415) 516-6144
Email: j.m.pogodzinski@gmail.com

Abstract
In order to save time and money by not driving to an ultimate destination, some urban commuters drive themselves a few miles to specially designated parking lots built for transit customers and located where trains or buses stop. The focus of this paper is the effect park-and-ride (P&R) lots have on the efficiency of bus transit as measured in five bus transit systems in the western U.S.

This study describes a series of probes with models and data to find objective P&R influence measures that, when combined with other readily-available data, permit a quantitative assessment of the significance of P&R on transit efficiency. The authors developed and describe techniques that examine P&R as an influence on transit boardings at bus stops and on bus boardings along an entire route.

The regression results reported are based on the two in-depth case studies for which sufficient data was obtained to employ econometric techniques to examine the effects of park-and-ride availability on bus transit productivity. Both Ordinary Least Square (OLS) regression and Poisson regression are employed.

The results from the case studies suggest that availability of parking near bus stops is a stronger influence on transit ridership than residential housing near bus stops. Results also suggest that expanding parking facilities near suburban park-and-ride lots increases the productivity of bus operations as measured by ridership per service hour. The authors also illustrate that reasonable daily parking charges -- compared to the cost of driving to much more expensive parking downtown -- would provide sufficient capital to build and operate new P&R capacity without subsidy from other sources of revenue.

Keywords: public transportation, bus public transit, park and ride, multi-modal facilities, quantitative analysis, OLS regression, Poisson regression, geographic information systems
Acknowledgments

The authors are most appreciative for funding from the Mineta Transportation Institute at San Jose State University and the California Department of Transportation in support of this work. The authors also thank King County Metro Transit and Santa Clara Valley Transportation Authority for access to numerical and geographic map layer data that made this study possible. Los Angeles County Metro, Community Transit of Snohomish County Washington, and Pierce Transit based in Lakewood, Washington also provided data. King County Metro staffs were generous in reviewing and assisting in the development of analytical concepts. The editors at Mineta Transportation Institute are responsible for many improvements in the wording and formatting. We also received research assistance from Gloria Yan, Yanan Li, and Cameron Simons. Three anonymous reviewers’ comments were used by the authors to strengthen the report considerably.
Table of Contents

Abstract ... 2
Acknowledgments ... 3
List of Figures .. 6
List of Tables ... 7
Executive Summary ... 8
Organization of the Paper ... 9
Case Studies .. 10
Broad Policy Context of Park-and-Ride ... 12
Costs and benefits of Park-and-Ride .. 18
Data Used to Estimate Park-and-Ride Impact on Transit Efficiency 19
Econometric Strategy to Estimate Park-and-Ride Impact on Transit Efficiency 22
Route-level and Stop-level Analyses .. 22
Results of Stop-Level Analysis ... 35
Route-Level Regressions ... 36
Results of Route-Level Analysis .. 37
 King County Metro ... 37
 Focused Case Study: King County Metro Transit .. 39
Economic Consequence of Higher Productivity from Transit Access at P&R Lots 42
Santa Clara Valley Transportation Authority, San Jose, California 43
Los Angeles County Metro ... 44
Community Transit, Snohomish County Results .. 49
Pierce Transit Results .. 50
Summary with Conclusions and Implications .. 51
Suggestions for Further Research .. 53
References ... 54
Appendix A. The Case Studies ... 56
 King County Metro Transit (KCM) ... 56
 Santa Clara Valley Transportation Authority (VTA) ... 56
 Los Angeles County Metropolitan Transportation Authority 57
 Community Transit (Snohomish County, Washington) ... 58
Pierce Transit (Tacoma, Washington and Vicinity) ... 60
Route-Level Analysis and Stop-Level Analysis ... 64
Appendix D. Density vs. Park-and-Ride .. 69
List of Figures

Figure 1. King County Metro Selected Bus Routes and Park-and-Ride Lots.
Figure 2. Santa Clara VTA Selected Bus Routes and Park-and-Ride Lots.
Figure 3. Los Angeles Metro Selected Bus Routes and Park-and-Ride Lots.
Figure 4. Map of the Community Transit System.
Figure 5. Map of the Pierce Transit System.
Figure 6a. Population Growth 2000-2010 in King County.
Figure 7a. High and Low Boardings per Revenue Hour Routes for KCM.
Figure 8. Stop-Level Regression Specifications.
Figure 9. The Marginal Effect of Park-and-Ride Capacity for KCM.
Figure 10. Seattle and East King County bus stops with more than 250 A.M peak boardings.
Figure 11. Bus Route Productivity in East King County, Washington.
Figure 12. Impact of Total Park-and-Ride Spaces along a Route.
Figure 13. Impact of Total Park-and-Ride Spaces along a Route.
Figure 14. Impact of Total Park-and-Ride Spaces along a Route Based on Poisson Regression.
List of Tables

Table 1. Overview of Case Studies ... 10
Table 2. Comparison of Santa Clara County and King County 11
Table 3. Transit Comparisons for Several Metropolitan Counties 11
Table 4. KCM and VTA Transit System Comparisons 12
Table 5. Ordinary Least Squares Stop-Level Regression Results for KCM and VTA 32
Table 6. Poisson Regressions for KCM and VTA with Various Park-and-Ride Variables 34
Table 7. Calculating Incremental Impacts of Various Variables 36
Table 8. Route-Level Regression for KCM ... 38
Table 9. VTA Route-Level Regression .. 44
Table 10. OLS Regression with Boardings Per Revenue Hour as Dependent Variable and Total Park-and-Ride Spaces Along Route as Park-and-Ride Influence Variable 45
Table 11. OLS Regression with Boardings Per Revenue Hour as Dependent Variable and the Number Park-and-Ride Lots Along Route as Park-and-Ride Influence Variable 46
Table 12. OLS Regression with Average Daily Riders as Dependent Variable and Total Park-and-Ride Spaces Along Route as Park-and-Ride Influence Variable .. 47
Table 13. OLS Regression with Average Daily Riders as Dependent Variable and the Number Park-and-Ride Lots Along Route as Park-and-Ride Influence Variable .. 48
Table 14. Poisson Regression with Average Daily Riders as Dependent Variable and Total Park-and-Ride Spaces Along Route as Park-and-Ride Influence Variable .. 48
Table 15. Regression Summary, Community Transit, AM Peak Route Sample 50
Table 16. Regression Summary, Pierce Transit, AM Peak Route Sample 51
Executive Summary
Across the United States, park-and-ride (P&R) lots with frequent bus service to urban employment centers have proven to be very popular. Such facilities are often filled to capacity on work days. At the same time, the very idea of P&R has been criticized by transit advocates because government-funded construction and operation of parking at transit centers is perceived as an expensive way to grow transit ridership, and is also viewed as problematic because it encourages commuters to use their automobiles instead of more environmentally benign means.

As a contribution to a deeper understanding of where P&R fits into an urban regional system of public transit, this study explores the effect on bus system operations of the drive-and-park-and-ride means of transit access and its fiscal implications. Transit’s economic efficiency is defined by measuring the number of riders per unit of transit resource, in particular, by passenger boardings per vehicle hour in revenue service.1

This study uses data from three transit agencies in Washington State and two transit agencies in California. The bus transit systems in King County, Washington (Seattle region) and Santa Clara County, California (San Jose region) are examined in detail, and in three other agencies in less detail: Los Angeles County Metro and two agencies serving the suburbs of Seattle.2

For the two agencies – serving Seattle and San Jose – where detailed boarding data were available, evidence from regression analysis indicates that park-and-ride facilities near bus stops generate more ridership per stop than stops that are less proximate to parking. The authors also found evidence in these two systems – having two distinct service and patronage levels – suggesting that additional car parking near bus stops is more cost-effective in generating ridership than additional residential density near the bus stops.

For four agencies out of the five, quantitative evidence emerged that the bus routes with higher productivity measured by boardings per service hour are associated with park-and-ride facilities to a greater degree than routes with lower productivity. In the transit agency serving San Jose, this relationship could not be found, although neither could a completely opposite relationship.

To provide an example of financial impact of P&R, 53 Seattle region suburban bus routes of King County Metro were examined where the strongest influence on boardings per revenue hour was found within the data set. Calculations show that 50,000 transit service hours, worth $17 million, are saved annually – ten percent of annual operating costs for this sub region – because passengers are picked up at P&R facilities instead of at bus stops not located at P&R lots. This level of savings at the scale of operations found in this one example is sufficient to economically justify investment in expanded P&R facilities, if greater operational efficiency in transit operations is an important criterion.

Transit agencies often view P&R as an expensive source of riders. One parking space yields one customer, and parking spaces can cost fifty thousand dollars each. However, given the reality of residential patterns in suburban North America, environmental objections to adding P&R spaces could be mitigated by having a quantifiable financial benefit for the transit agency from increasing the productivity of bus service.
Finally, financial calculations are described that illustrate that reasonable fees for customers of P&R would likely be sufficient to pay for constructing and maintaining the facilities where parking is provided. Of course, to attract customers, the P&R fee combined with the transit fare would have to provide an alternative to competition from private vehicle modes that is partially defined by exogenous price levels for motor vehicle fuel and for parking in employment centers that are customer destinations.

Organization of the Paper

The paper is organized as follows. The first section following this one gives an overview of the broad policy context of park-and-ride. (The five case studies are detailed in Appendix A.) This includes a discussion of productivity measures for bus transit services and the costs and benefits of park-and-ride. This section also describes the broad policy implications of the present study.

The next section of the paper discusses the data employed in the analysis of transit systems and park-and-ride and the econometric strategy for estimating parameters associated with park-and-ride. Three types of analyses that correspond to three different sets of variables are employed: route-level analysis, stop-level analysis of boardings, and stop-level analysis of boardings per trip. The different types of analyses examine the same underlying phenomenon from different perspectives. (The connection between stop-level analysis and route-level analysis is developed in a heuristic example detailed in Appendix B.)

Route-level analysis employs *boardings per revenue hour* as the dependent variable; stop-level analysis employs both *boardings at a stop* and *boardings per trip at a stop* as the dependent variables (where the data permits the use of both variables). For stop-level analysis of boardings at a stop, both Ordinary Least Squares (OLS) regression results and Poisson regression are presented. The rationale for and interpretation of the OLS and the Poisson regressions is discussed in greater detail in this section.

The discussion in the next section shows that the results of route-level and stop-level analyses of the two main cases are generally consistent, and the analyses of stop-level results show great consistency between King County Metro and VTA, both for OLS and Poisson regressions across various specifications of the P&R variables.

The next section after this is devoted to the additional case studies. The policy implications of these results are given in the penultimate section. The final section is conclusions and summary.
Case Studies

We consider five case studies, each of which represents a different transit agency. A statistical overview of the case studies is given in Table 1. We develop detailed analyses of two of the cases for which we had the most complete data: King County Metro (Seattle) and Valley Transportation Authority (San Jose). The two cases we examine in detail are broadly similar to one another in service area population. Our other cases include small suburban systems near Seattle, and the Los Angeles Metropolitan Transportation Authority—a very large system.

<table>
<thead>
<tr>
<th>Agency</th>
<th>Service Area Population</th>
<th>Annual Boardings (millions)</th>
<th>Passenger Miles (millions)</th>
<th>Vehicle Revenue Miles (millions)</th>
<th>Vehicle Revenue Hours (thousands)</th>
<th>Computed Average Speed (MPH) = vehicle revenue miles divided by vehicle revenue hours</th>
<th>Operating Cost/ Vehicle Hour (in dollars)</th>
<th>Operating Cost/ Boarding</th>
</tr>
</thead>
<tbody>
<tr>
<td>Santa Clara Valley Transportation Authority</td>
<td>1880876</td>
<td>32</td>
<td>166</td>
<td>15</td>
<td>1,210</td>
<td>12.4</td>
<td>186</td>
<td>$6.93</td>
</tr>
<tr>
<td>Los Angeles County Metropolitan Transportation Authority dba: Metro</td>
<td>8626817</td>
<td>336</td>
<td>1,387</td>
<td>68</td>
<td>6,232</td>
<td>10.9</td>
<td>143</td>
<td>$2.66</td>
</tr>
<tr>
<td>King County Department of Transportation - Metro Transit Division</td>
<td>2044449</td>
<td>98</td>
<td>484</td>
<td>32</td>
<td>2,679</td>
<td>11.9</td>
<td>161</td>
<td>$4.41</td>
</tr>
<tr>
<td>Pierce County Transportation Benefit Area Authority</td>
<td>557069</td>
<td>10</td>
<td>42</td>
<td>4</td>
<td>374</td>
<td>10.7</td>
<td>132</td>
<td>$4.75</td>
</tr>
<tr>
<td>Community Transit (Snohomish County)</td>
<td>691588</td>
<td>8</td>
<td>79</td>
<td>6</td>
<td>357</td>
<td>16.8</td>
<td>239</td>
<td>$10.66</td>
</tr>
<tr>
<td>Central Puget Sound Regional Transit Authority</td>
<td>2814224</td>
<td>17</td>
<td>248</td>
<td>12</td>
<td>547</td>
<td>21.9</td>
<td>194</td>
<td>$6.39</td>
</tr>
</tbody>
</table>

Table 1. Statistical Overview of Case Study Agencies

Table 1 summarizes basic operational data on the case studies from the National Transit Data Base for 2013; all motor bus routes considered. King County buses—including buses contracted by Sound Transit—carry around 100 million passengers annually, while VTA buses carry around 32 million. These ridership numbers mean per capita annual bus ridership—boardings divided by population of the transit service territory—in King County is 50, while in the VTA territory, the annual per capita bus ridership is 18. Beyond buses, VTA includes 42 miles of light rail serving 10.7 million boardings annually, while the light rail in King County amounts to a single 17-mile route carrying 9.7 million per year.
Table 2 provides a brief outline comparison of Santa Clara County and King County based on data from the American Community Survey.\(^5\)

County and Urbanized Area Comparisons

<table>
<thead>
<tr>
<th></th>
<th>Santa Clara County</th>
<th>King County</th>
</tr>
</thead>
<tbody>
<tr>
<td>Population</td>
<td>1,812,208</td>
<td>1,974,567</td>
</tr>
<tr>
<td>Median Household Income</td>
<td>$91,702</td>
<td>$71,811</td>
</tr>
<tr>
<td>Total Employment</td>
<td>865,327</td>
<td>1,030,515</td>
</tr>
<tr>
<td>Population Density per Square Mile</td>
<td>10,599.37</td>
<td>7,919.26</td>
</tr>
<tr>
<td>Housing Unit Density per Square Mile</td>
<td>3,881.68</td>
<td>3,822.69</td>
</tr>
</tbody>
</table>

Table 2. Comparison of Santa Clara County and King County

Source: American Community Survey\(^6\)

Santa Clara County and King County are broadly similar in some basic respects. They have approximately equal population, and the housing unit density per square mile is similar. However, in other respects the counties are quite different. Median household income in Santa Clara County is almost 28% greater than median household income in King County.\(^7\) There are 19% more workers in King County than in Santa Clara County (although population is only 9% greater in King County than in Santa Clara County). Population density is almost 34% higher in Santa Clara County compared to King County, although housing unit density is very similar in the two counties. Other factors held constant, higher incomes can be expected to reduce ridership, while greater density can be expected to increase ridership. These suppositions are confirmed for both of the main case studies in the regression results we report below.

Table 3 compares the San Jose urbanized area with the Seattle urbanized area in terms of commuting to work.\(^8\)

<table>
<thead>
<tr>
<th>Urbanized Area</th>
<th>Total Workers</th>
<th>MEANS OF TRANSPORTATION (Percent of Workers)</th>
</tr>
</thead>
<tbody>
<tr>
<td>San Jose, CA Urbanized Area (2010)</td>
<td>811,558</td>
<td>Car, truck, or van: 86.8</td>
</tr>
<tr>
<td>Seattle, WA Urbanized Area (2010)</td>
<td>1,372,367</td>
<td>78.9</td>
</tr>
</tbody>
</table>

Table 3. Commuting Comparisons for San Jose and Seattle Urbanized Areas

Seattle has 18% more commuters than San Jose, but public transit use is more than two and a half times the rate in San Jose. Also the proportion of workers who walk to work is about two times as great in Seattle as in San Jose.

Transit System Comparisons

The bus transit systems that serve King County Washington and Santa Clara County California are very different, as indicated in Table 4.
Table 4. KCM and VTA Transit System

<table>
<thead>
<tr>
<th></th>
<th>KCM</th>
<th></th>
<th>VTA</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Number</td>
<td>Per 100,00 Workers</td>
<td>Per 100 Square Miles</td>
<td>Number</td>
</tr>
<tr>
<td>Routes</td>
<td>221</td>
<td>14.06</td>
<td>21.88</td>
<td>88</td>
</tr>
<tr>
<td>Stops</td>
<td>8076</td>
<td>513.61</td>
<td>799.47</td>
<td>3971</td>
</tr>
<tr>
<td>Park and Ride Lots</td>
<td>130</td>
<td>8.27</td>
<td>12.87</td>
<td>40</td>
</tr>
<tr>
<td>Total Capacity of Park and Ride Lots</td>
<td>25528</td>
<td>1623.52</td>
<td>2527.10</td>
<td>11752</td>
</tr>
</tbody>
</table>

King County Metro (KCM) has more than 2.5 times as many bus routes, more than twice as many stops, more than three times as many park-and-ride lots, and more than twice as many parking spaces in park-and-ride lots as does the bus network of Santa Clara VTA. Overall, public transit is a more significant component of workers’ commutes in the Seattle area than in the San Jose area. Transit resources are greater in Seattle compared to San Jose on a per worker (potential commuter) basis, but because the Seattle (urbanized area) covers a much greater area than the San Jose (urbanized area), the resource per square mile are less in Seattle than in San Jose.

The study did not consider many of the policy choices faced by regional transit leaders, such as choices about where to establish bus routes and P&R facilities, the setting of fare levels, or the authorization of financial and non-financial incentives for commuters to use transit. For example, all of the jurisdictions covered in this study offer a level of employer-managed incentives such as discounted bus fares and guaranteed rides home for emergencies that come up for commuters who do not bring a personal vehicle to their employment site. While such policies may significantly impact bus transit ridership, they are outside the scope of this study.

Broad Policy Context of Park-and-Ride

Park and ride should be viewed in the overall context of public transit in the U.S., which is subsidized by governments with a view toward providing affordable transportation for people who cannot afford a car or are physically unable to drive, and also because it is a mode of transportation that has smaller adverse environmental effects. This view is supported by Duncan and Cook (Duncan and Cook 2014). Additionally, public transit is supportive of Smart Growth, meaning compact, relatively dense, walkable communities organized for pedestrian and bicycle access to transit for a high percentage of daily travel. Numerous regional public policy initiatives are meant to motivate Smart Growth and related policies. Examples of public policy promoting Smart Growth and density include Plan Bay Area 2040 in the San Francisco Bay Area of California and Vision 2040 in the central Puget Sound region of Washington State.

The Smart Growth rationale ties into environmental improvement from emissions reductions brought about by lower use of automobiles in favor of transit. Reducing traffic congestion is sometimes considered by policy makers to be a motivation for supporting transit expenditures, although there is no direct evidence supporting a causal connection between more transit and lower road congestion. A more reasonable justification for transit is that it provides an alternative to driving in congestion.

P&R fits mostly clearly with the environmental rationale mentioned above. As concerns Smart Growth, there is a widespread perception that park-and-ride is not compatible with zones of transit oriented development, because P&R promotes use of automobiles, contrary to a major objective of Smart
Growth and transit oriented development. However, this perceived incompatibility is not strictly true. P&R promotes short driving trips over long driving trips. P&R increases vehicle use in less congested suburbs and reduces vehicle use in more congested downtown areas. P&R also promotes short driving trips over greater expansion of costly transit to support picking up dispersed commuters. P&R facilities serve to aggregate riders so that transit can work with greater efficiency in low-density suburbs. As pointed out by Reid Ewing, "the service area for a transit station or stop with a park-and-ride facility is on the order of 400 times greater than the service area based on walk access alone." (Ewing 1997, cited in Turnbull, Evans, and Levinson 2004). Ewing’s geometric calculation corresponds precisely to comparing a typical quarter mile nominal walking range for a bus stop to a five-mile vehicle movement radius around a P&R passenger access point.

There is a possibility of P&R usage causing VMT increases were travelers motivated to switch from 100 percent transit use to a combination of transit and P&R access. Consider the theoretical example of a neighborhood well-served by a bus line to downtown instead suffering the truncation of that bus line at a new P&R facility to which the bus riders would be forced to drive in order to access the bus. Private vehicle mileage rises in this case from zero to the sum of the new driving trips to the P&R facility. However, most studies of real world experience have associated P&R with VMT reduction (Turnbull, Evans, and Levinson 2004). How much reduction depends on how the P&R user would travel if the P&R facility were not available. The general case with P&R involves attracting suburban commuters having no easy bus access to convert from door-to-door private vehicle use into instead making trips in a multi-modal combination of driving and bus riding, a commuting mode change that clearly reduces VMT.

Even with all the documented virtues of high density living and transit oriented development, many Americans now reside in low density areas not within walking distance of transit. The sprawling residential neighborhoods on the fringes of most urban areas are likely to remain well spread out for the foreseeable future. In the meantime, (which may be a long time), policies should be pursued to operate transit as efficiently as possible.

Suburbanization and areas of relatively low density continue expanding in the United States generally, as revealed by recent U.S. Census estimates (Badger 2015), and in the two example regions in particular. As shown in the maps in Figures 1a and 1b, the locations of the greatest growth are widely dispersed outside the higher density central city areas, creating a challenge in providing transit service to and between the zones of high growth. Given the distribution of many urban residents in low density suburbs and the concentration of jobs to denser parts of the region, P&R may be an economically attractive form of commuting. Invariably, there are many suburban residents who are not within walking or cycling distance of fast, frequent transit service to job centers. However, residents with cars and jobs in central places served by transit are able to drive to transit stations and centers with parking lots and leave their vehicle there during the work day.
Figure 1a. Population Growth 2000-2010 in King County
Robert Spillar notes in his comprehensive guide to P&R,

“Suburban park-and-ride lots, as the name suggests, are typically located at the outer edges of the urban landscape. The chief function of these lots is to collect potential transit patrons as close to their place of origin (their homes) as possible, and provide a transfer point to long-haul (often express) transit service. These facilities rely on the private automobile as the collection and distribution mode. They rely on trunk-line transit routes (bus or rail) to provide the long-haul aspect of the home-to-work trip. Suburban park-and-ride lots are typically funded by public investment, but can in some cases sustain private ownership.” (Spillar 1997, 11)

Spillar states further,

“New park-and-ride facilities should be located adjacent to existing major transit corridors, where peak transit service can be provided with headways on the order of 15 minutes or less (10 minutes or less is optimal). Midday service can also be critical to generating high demand characteristics. Transit service should be oriented to the park-and-ride facility so as to minimize downstream transfers (i.e., the transit mode serving the park-and-ride facility should serve the
primary activity center directly, without necessitating a transit-to-transit transfer). To achieve this goal, park-and-ride lots should be placed in proximity to the existing transit route structure within the given corridor.” (Spillar 1997, 35, referring to Parsons Brinckerhoff Quade & Douglas, Inc. 1995)

While increasing ridership is important, increasing ridership per dollar of expenditure is paramount. Transit agencies able to increase ridership per operating dollar are, in effect, reducing the public subsidy per rider.

The cost comparison of P&R with bus pickup at local stops in a low density suburb is relatively straightforward. One can compare the cost of (a) providing parking places for transit customers coming—typically in the usual morning commute period -- from a series of first origins to a single P&R point of pick up against (b) the cost of a transit vehicle traveling additional hours to reach a series of dispersed bus stops to which travelers walk or are chauffeured from first origins.15

Consider this simplified cost analysis based on the “payback period” of an investment: The average operating cost of a bus in 2013 was $127 per hour according to the U.S. National Transit Data Base.16 According to the same source, all across America in cities large and small, buses averaged 34 boardings per revenue hour of service. The cost of providing a parking space for a car ranges widely depending on cost of land and whether the parking lot is grass and gravel, paved, or in a structure. Structured parking around Seattle costs about $30,000 per space. As an illustration of marginal effect, the authors assume running a single suburban bus an extra hour in the morning and again in the evening would allow service directly to the neighborhoods of 34 suburban customers commuting to a central city district where they worked all day. For the 250 work days in a year, the marginal bus cost is 250 days times two revenue hours per day times $127 per hour, or $63,500. At the same time, this extra expense would be eliminated if the 34 customers drove themselves to a P&R facility, because we assume the bus would have a shorter route to that place. For simplicity, assume that bus passes by the P&R facility and continues on for more route distance in the case of traveling through the residential neighborhood. If the cost of providing parking is $30,000 per stall, then the 34 stalls would cost $1,020,000. Then the payback on that investment if it came only from reduced bus operating costs in this simplified marginal analysis would be $1,020,000 divided by $63,500 or 16 years, well within the expected life span of a parking structure. However, it is also reasonable to assume that an extra fee could be charged for commuters using a P&R facility, which would make the payback on the investment in parking stalls come even quicker. Parking fees are discussed at the end of this report.

The benefits of park-and-ride facilities have motivated implementation worldwide. For example, the American Public Transportation Association reports that there are 210,000 P&R spaces in 360 U.S. cities as of January 2012.17 These facilities are not necessarily owned by transit agencies; for example, the State Departments of Transportation in California and in Washington own some P&R lots. A survey of European cities by Dijk and Montalvo (Dijk and Montalvo 2011) found moderate or extensive adoption of P&R in cities of the United Kingdom, Netherlands, Germany, Switzerland, Norway, Finland, Czech Republic, Austria, and Poland.
Several aspects of P&R have been systematically investigated in previous work. Research has been carried out on the optimal location of P&R lots to attract the largest number of users (Turnbull, Evans, and Levinson 2004). Work has also been done to measure the benefits to commuters and to the environment from reductions in vehicle miles traveled and emissions (Duncan and Cook 2014). As summarized in a policy guidance document from the U.S. Environmental Protection Agency, “in developing and implementing fringe park-and-ride facilities, an assessment of the air quality impacts should be undertaken which looks at the emission reductions expected due to VMT reduction balanced against cold start emissions which are not eliminated and options for reducing auto trips altogether (Environmental Protection Agency 1992).” The environmental damage from the cold-start phase of a trip from home to a P&R lot a few miles away is likely to be mitigated in the future as electric hybrid and battery vehicles become more widely used (Nichols, Kockelman, and Reiter 2016). This mitigation of environmental damage is especially likely in California and other states with zero-emission vehicle goals set by regulation, and will become more widespread under the 54.5 mpg Corporate Average Fuel Economy (CAFE) goal for 2025 new cars set in regulations issued by the Obama Administration (National Research Council 2013).

However, remarkably little attention has been given to the measurement of park and ride impact on the operational productivity of the public bus lines that serve these lots. (Turnbull, Evans, and Levinson 2001, CTC & Associates LLC 2010, Florida Planning and Development Lab 2004, Qian and Zhang 2011) A key reference on P&R, TCRP Report 65, Chapter 3, alludes to the productivity yielded by park and ride facilities as a collector of customers by noting the following objective: “Concentrating transit rider demand to a level enabling transit service that could not otherwise be provided.” The report goes on to describe that “in many low-density areas, without park-and-ride facilities and service, no attractive public transit could be effectively operated.” (Turnbull, Evans, and Levinson 2004, 3-2) This objective clearly hints at the importance of attracting enough riders to make transit service a reasonable expenditure of public resources in suburban jurisdictions.

In this research the authors focus on the narrower issue of which of two modes of passenger collection is better – driving buses on suburban routes to a large number of bus stops near the home locations of dispersed customers or picking up these same customers from a place that they have brought themselves to in their private vehicles.

The paper does not distinguish between the various categories of potential owners of P&R facilities, whether owned by a transit agency, by a State Government agency, or a non-government organization. Our analysis also assumes that no part of the bus transit system is at capacity. The provision of bus service is not a smooth, continuous production curve – capacity is added in the discrete increments of distinct routes and distinct bus runs and distinct park-and-ride facilities, each with a cost to establish and operate and with a capacity constraint. Considering a single new commuter moving into an existing suburban environment with bus routes and P&R facilities already in place and with spare capacity in both, the transit agency should be indifferent as to how this customer interfaces with the system – there will be space on the bus whether the customer boards at a neighborhood bus stop or drives to a park-and-ride. The marginal cost of the added rider will be zero.
Costs and benefits of Park-and-Ride

The efficiency, or productivity, of transit is directly measured by cost per boarding. Boardings of passengers is a key production measure in public transit. The ratio of this production measure to cost is mathematically related to a less direct productivity measure, boardings per vehicle revenue hour. A vehicle revenue hour is an hour when the bus is in operation and available to pick up and discharge passengers. Cost per boarding is the product of cost per revenue hour and revenue hour per boarding. Higher efficiency is marked by lower cost per boarding. Reducing costs per boarding requires reducing service hours per boarding, or considering the reciprocal, raising boardings per service hour. The more boardings per service hour, the greater the productivity of service.\(^1\)

One way to raise boardings per service hour for a given number of passengers is to collect them at fewer locations. Rather than routing buses through low density suburbs to pick up passengers, the transit agency can let the passengers assemble themselves at a more limited number of locations, ideally located on or near the roads that buses take when going to their final destinations. This strategy is implemented by providing P&R lots for transit customers.

Park-and-ride works well when there is a parking space actually available when a customer drives into the facility, and then after the commuter parks her or his car, a bus comes to pick up her or him according to the schedule or expected frequency of service. These success factors can be present both with all-day transit service and peak-period-only transit service. Because buses are usually more intensively used in peak than in off-peak periods, the transit efficiency would be higher in peak than off peak. However, the performance distinction of P&R that we sought to analyze would be visible in either case, if it exists.

At the same time, it must be acknowledged that for mid-day, off-peak P&R service to be viable, there have to be available parking spaces for arriving travelers seeking to access bus service, and there has to be the bus service itself on a mid-day schedule. There are examples of P&R facilities in all five of the case study jurisdictions where mid-day service is either non-existent by design, or else the parking facility is filled to capacity with morning-arriving cars that boardings from drive-up customers on mid-day bus trips on certain routes is necessarily nil.

Another important observation is that different types of bus service may serve a park & ride lot, especially if the facility is part of a more general transit hub where customers may arrive or depart on a local bus serving a residential neighborhood, with a bus-to-bus transfer either to or from an express bus serving an employment center, or even from one local bus route to another. In this study, the authors usually generalized – with exceptions noted – across different types of bus service – local, express, bus rapid transit – to obtain more general findings about the relationship of parking availability to bus operations.

While P&R lots in theory make public transit more efficient by raising boardings per service hour and thus lowering cost per boarding, the cost of providing the park & ride lots needs to be considered. In addition to paying for the construction of parking facilities, or renting such a facility, there may be maintenance costs, including providing security and monitoring for illegal usage, which may mean a
customer parking in a space for more than a stated length of time, such as 12 hours or 24 hours. Illegal multiple day parking is sometimes motivated by quick transit access to an airport or train station with intercity service. Additionally, there may be a cost in providing additional bus service if P&R leads to a larger number of transit boardings than before. An agency may choose to collect a fee for parking to offset the cost of the facility, which then sets up an expenditure for the cost of collection of fees via personnel or automated means.

The source of funding, established purposes, and actual use in practice of particular park-and-ride lots is a cross-cutting issue of importance. If the park and ride lot is established or maintained for at least partial use for vanpool or carpool assembly, or for use by rail passengers, perhaps even inter-city rail passengers beyond the boundaries of the transit district buses that also service it, then the impacts measured and assessed in this report are only a subset of the complete public policy overview. At the same time, from an analytical perspective, these other uses can be viewed analytically as constraints on the impacts for bus transit productivity, in that fewer slots for bus patrons because of more space used for non-bus transit simply limit the impact that car-parking bus passengers can have on operational performance of the buses.

The authors also note that bus passengers who arrive by other means than in a private vehicle parked at the P&R facility are not distinguished in the present analysis from those who simply drive in and park. The other means of arrival can be walking from nearby residences, bicycle, kiss-and-ride drop off, local shuttles operated by other than the transit agency in focus and inter-city trains.

Apart from the costs and benefits from the point of view of the transit agency and the tax-paying public, there is another set of economic costs and benefits for a bus-riding customer who parks at a P&R. Presumably a customer is saving time or money or both in utilizing a P&R, net of the fees to park and the fares on the bus. Financial savings come from driving fewer miles in a car, and saving on parking at the trip destination. It’s also possible that the experience of parking and riding is simply more comfortable and convenient than the alternative of driving more and parking at the destination, or the alternative of getting to a bus stop closer to the trip origin and waiting for a bus.

Society benefits from reduced vehicle traffic as commuters are intercepted and taken off the road by parking their cars and getting aboard transit vehicles. The local traffic around a P&R may be perceived as a cost by jurisdictions or the citizens who live close to the facilities. If the lots fill up, there can be spill-over that consumes parking spots in neighborhoods where P&R lots are located. In fact, P&R lots are often popular to the point of demand exceeding capacity in U.S. and Canadian urban regions.

Data Used to Estimate Park-and-Ride Impact on Transit Efficiency

The authors apply consistent methodologies to two case studies, where they were able to obtain the most complete data. Broadly speaking, these methodologies are route-level analysis and stop-level analysis. Route-level analysis examines route-level a performance measure such as boardings per revenue hour; stop-level analysis examines stop-level performance measures such as boardings at a stop or boardings per trip at a stop. The authors extended certain aspects of the methodologies to three other agencies where they had less
data. The methodology is intended to provide insights into the impact that P&R lots have on the efficiency of transit. The study focused on bus ridership during morning commute hours.

The types of data used in the two most comprehensive cases in this study are comprised of data in GIS (Geographic Information Systems) layers, files of ridership and cost data by route, boardings at each stop, characteristics of each route such as length and speed, and demographic and economic data of areas near bus stops.

The study employed the following types of data:

- GIS layer of bus routes
- GIS layer of bus stops
- GIS layer of park-and-ride lots
- GIS layer of Census tracts with economic and demographic variables
- GIS layer of Census block groups with economic and demographic variables
- GIS layer of Census blocks with population and housing
- Ridership data – typically boardings and trips by stop by route by time
- Route efficiency data – boardings per revenue hour and related measures by route

Sources of Data and Data Quality

GIS and related data on Census tracts, Census block groups, and Census blocks comes from the U.S. Census Bureau as part of the American Community Survey (ACS) and the 2010 Census. GIS data on bus routes, bus stops, park-and-ride lots, boardings, and route efficiency data come from the transit agencies. Data from the U.S. Census Bureau employ a consistent methodology. Data from transit agencies differs in terms of the detail and completeness with which it is provided.

Variables

A variety of variables is available for either kind of analysis. These variables are usefully divided into outcome variables (dependent variables in a regression equation) and explanatory variables (independent variables in a regression equation). Each type of variable can also be characterized as a route-level variable, a stop-level variable, or a neighborhood-level variable. Route-level variables are always classified by route number, direction (e.g., “inbound” or “outbound”), and time of day. Stop-level variables may sometimes also be identified by route number, direction (e.g., “inbound” or “outbound”), and time of day. Some stop-level variables may be characterized by proximity to another feature (e.g., to a park-and-ride lot, to an employment concentration, or to a residential concentration).

Neighborhood-level variables are variables associated with areas such as buffers of a given radius around stops or park-and-ride lots, Census block groups, or Census tracts. For example, the authors construct quarter-mile buffers around stops. A quarter mile is often thought of as the distance a potential bus rider is willing to walk to ride the bus. Neighborhoods consisting of buffers around stops or park-and ride lots can be associated with stop-level variables or route-level variables. Neighborhoods consisting of buffers around routes can be associated with route-level variables.
Dependent Variables

- Boardings per revenue hour [route-level]
- Boardings [stop-level]
- Boardings per Trip [stop-level]

Independent Variables

- Number of stops along a route [route-level]
- Speed (velocity) of bus along a route [route-level]
- Park-and-Ride Influence [route-level]
- Residential Density [stop-level]
- Number of routes serving a stop [stop-level]
- Distance to nearest park-and-ride lot [stop-level]
- Park-and-ride lot characteristics (e.g., number of spaces) [stop-level or route-level]
- Demographic and economic characteristics (such as number of works, population density, and income) of a buffer around a stop [stop-level or route-level]

The Park-and-Ride Influence variable [route-level] can be formulated to include park-and-ride characteristics, such as number of spaces.

Several of the variables mentioned above were created using a GIS program. For example, residential density within a quarter-mile of a bus stop was created by first determining quarter-mile buffers (rings) around each stop and then intersecting the quarter-mile buffers with Census Block data on population. Likewise, measures of median income and employment within a quarter mile of a stop were computed by intersecting the quarter-mile buffers with the relevant American Community Survey data for Census Block Groups.

In some cases, we employ several versions of some variables. For example, we employ the variable squared along with the original variable, in order to capture potential nonlinearities. Where appropriate, we employ the natural logarithm of a variable, to capture potential nonlinearities and to estimate elasticities. The descriptive statistics of all variables used in the report over various data sets appears in Appendix C.
Econometric Strategy to Estimate Park-and-Ride Impact on Transit Efficiency

Route-level and Stop-level Analyses
Figures 2a – 2e show selected routes and stops for KCM and VTA. These maps are suggestive of the relationships our econometric analysis seeks to uncover.

Figure 2a. High and Low Boardings per Revenue Hour Routes for KCM
Both Figure 2a and 2b show that higher boardings are seen more within the City limits of Seattle than outside of the City. The City of Bellevue does not exhibit particularly high transit demand compared to the surrounding smaller cities outside Seattle.
Figure 2c. High and Low Boardings per Revenue Hour Routes for VTA
Figure 2d. High Morning Boardings Stops for VTA

Figure 2e shows high Boardings per Trip stops relative to park-and-ride locations and parking capacities for VTA.
Figure 2e. Stops with Boardings per Trip Greater Than or Equal to 10 and Park-and-Ride Lots for VTA
Stop Level Regression Specifications

The broad framework for the stop-level results is given in Figure 3.

Figure 3 shows three alternative dependent variables (blue). Two of the variables represent morning boardings on each system, but the boardings on KCM were averaged, so the original data included decimals. One of the regression methods employed (Poisson regression) requires count data, so the authors rounded the KCM data to the nearest integer when estimating Poisson regressions. The authors determined by running regressions with both the rounded data and the original data that rounding did not affect the coefficient estimates.

This Figure also shows three categories of independent variables: transit variables, economic-demographic variables, and park-and-ride variables. For the base cases for KCM and VTA the authors use as a transit variable (purple) the number of lines serving a stop. This variable is expected to be positively related to boardings.

The authors also use economic and demographic variables (green) describing the areas within walking distance (a quarter mile) of each stop: population density, number employed, and median household income. The authors expect the first two of these variables to be positively related to morning boardings and the last variable, income, to be negatively related to boardings.
Figure 3 shows three alternative park-and-ride variables (brown): a Quarter Mile Dummy, a Quarter Mile Capacity variable, and distance-decay variables that have two components (capacity and distance). The Quarter Mile Dummy is equal to 1 if the stop is within a quarter mile of a P&R lot, zero otherwise. The Quarter Mile Capacity variable is equal to the capacity (size) of the park-and-ride lot if it is within a quarter mile of the stop, zero otherwise. Basically, the authors are weighting the quarter mile dummy by the capacity of the park-and-ride lot. This can be viewed as a sort of distance-decay function. Finally, for one of the regression methods below (Poisson regression) the authors use a traditional distance decay function that results in two independent variables (representing, respectively, capacity of the park-and-ride lot and distance to the bus stop). The reason for introducing this distance-decay function is explained below.

Regression Methods: OLS and Poisson

The authors employ two estimation procedures: Ordinary Least Squares (OLS) regression and Poisson regression. The authors use OLS because it provides a good baseline for understanding all regression results, it provides coefficient estimates that are straightforward to interpret, and also because it will allow us to examine the results of stop-level and route-level analysis in the same framework. OLS is the only method the authors can use for the route-level data (although we examine several specifications of the OLS regressions). The authors employ Poisson regressions to address two issues with the OLS estimates of stop-level data. The dependent variable – boardings – is a count variable. That is, it is either 0, 1, 2, ... The Poisson model is more appropriate and more accurate than OLS for count dependent variables. Second, as noted below, the interpretation of the OLS coefficients as marginal impacts is somewhat stilted. Given that absolute changes, say, in income, represent very different things in King County compared to Santa Clara County, it would be better to have coefficient estimates that represent elasticity – the impact in percentage terms on the dependent variable of a given percentage change in the independent variable, holding constant all other variables. In the OLS framework, this would require that the dependent variable be logarithmically transformed. However, as is typical with count data, many of the observations on the dependent variable are zero, for which the logarithm is undefined. The authors can overcome this difficulty and obtain elasticity estimates for some dependent variables in the base case regressions using the Poisson estimation method. Furthermore, Poisson regression is robust to a wide range of specification errors. We detail the functional form of our specifications for stop-level and route-level analysis below.

Stop-level Analysis

Stop level analysis employs stop-level data to determine whether park-and-ride lots contribute significantly to boardings at a stop, and, if so, how much they contribute. Typically, there are many more stops (thousands) than routes (scores), so estimates of stop-level models generally employ many more observations. But just as route-level analysis employs some stop-level data (represented by the various influence variables discussed above), stop level analysis can employ some route-level and neighborhood-level variables, but these variables must be made compatible with the stop-level approach. One disadvantage of stop-level analysis is that there appears to be no straightforward way to
recover the key performance variable – *boardings per revenue hour*. However, a host of other policy-relevant variables emerge from stop-level analysis.

We present three formulations of stop-level analysis: OLS analysis with boardings as a dependent variable, Poisson analysis with boardings as a dependent variable, and OLS analysis with boardings per trip as a dependent variable.

OLS Analysis with Boardings as a Dependent Variable

Our formulation is:

\[
(1) \text{Boardings}_s = \beta_0 + \beta_{\text{NUMROUTES}} \text{NUMROUTES}_s + \beta_{\text{PRDUMMY}} \text{PRDummy}_s \text{ for alternatively } + \beta_{\text{PRCAP}} \text{PRCAP}_s \\
+ \beta_{\text{POPdens}} \text{POPdens}_s + \beta_{\text{MEDHHInc}} \text{MEDHHInc}_s + \beta_{\text{Emp}} \text{EMP}_s + \epsilon_s
\]

where

\(s \) is the stop;

\(\beta_{\text{NUMROUTES}} \) is the coefficient on the number of routes serving a particular stop \(s \);

\(\text{NUMROUTES}_s \) is the number of routes serving a particular stop \(s \);

\(\beta_{\text{PRDUMMY}} \) is the coefficient on the park-and-ride dummy variable that indicates whether a particular stop \(s \) is within a critical distance of a park-and-ride lot;

\(\text{PRDummy}_s \) is a dummy variable indicating whether a stop is within a critical distance of a park-and-ride lot;

\(\beta_{\text{PRCAP}} \) is the coefficient on the park-and-ride capacity variable;

\(\text{PRCapacity}_s \) is the capacity of the nearest park-and-ride lot to stop \(s \);

\(\text{PRCAP}_s = [\text{PRCapacity}_s * \text{PRDummy}_s] \);

\(\beta_{\text{PopDens}} \) is the coefficient on population density within a quarter-mile of a stop;

\(\text{POPdens}_s \) is the population density within a quarter-mile of a stop;

\(\beta_{\text{MedHHInc}} \) is the coefficient on median household income within a quarter-mile of a stop;

\(\text{MEDHHInc}_s \) is median household income within a quarter-mile of stop \(s \);

\(\beta_{\text{Emp}} \) is the coefficient on employment within a quarter-mile of a stop;

\(\text{EMP}_s \) is employment within a quarter-mile of a stop;
ϵ_s is an error term.

Poisson Analysis with Boardings as a Dependent Variable

\[
(2) \text{Boardings}_s = \beta_0 + \beta_{\lnPRCAP}\ln(PRCAp_s) + \beta_{\lnPopDens}\ln(POPDENS_s) \\
+ \beta_{\lnMedHHInc}\ln(MEDHHINC_s) + \beta_{\lnEmp}\ln(EMP_s) + \epsilon_s
\]

where

s is the stop;

β_{\lnPRCAP} is the coefficient on the logarithm of the park-and-ride capacity variable;

$\ln(PRCAp_s)$ is the logarithm of the capacity of the nearest park-and-ride lot to stop s;

$PRCAp_s=[PRCAp_s * PRDumm_y_s]$;

β_{\lnMedHHInc} is the coefficient on the logarithm of median household income within a quarter-mile of a stop;

$\ln(MEDHHINC_s)$ is logarithm of median household income within a quarter-mile of stop s;

β_{\lnEmp} is the coefficient on the logarithm of employment within a quarter-mile of a stop;

$\ln(EMP_s)$ is employment within a quarter-mile of a stop;

ϵ_s is an error term.

OLS Analysis with Boardings Per Trip as a Dependent Variable

\[
(3) \text{Boardings per Trip}_s = \beta_0 + \beta_{PRCAP}PRCAp_s + \beta_{PopDens}POPDENS_s + \beta_{PopDensSqr}POPDENSQRD_s \\
+ \beta_{MedHHInc}MEDHHINC_s + \beta_{MedHHIncSqr}MEDHHINCQRD_s + \beta_{Emp}EMP_s + \epsilon_s
\]

where

s is the stop;

β_{PRCAP} is the coefficient on the park-and-ride capacity variable;

$PRCAp_s$ is the capacity of the nearest park-and-ride lot to stop s;

$PRCAp_s=[PRCAp_s * PRDumm_y_s]$;

$\beta_{PopDens}$ is the coefficient on population density within a quarter-mile of a stop;

$POPDENS_s$ is the population density within a quarter-mile of a stop;
\(\beta_{PopDensSqr} \) is the coefficient on population density squared within a quarter-mile of a stop;

\(POPDENSQRD_s \) is the population density within a quarter-mile of a stop squared;

\(\beta_{MedHHInc} \) is the coefficient on median household income within a quarter-mile of a stop;

\(MEDHHINC_s \) is median household income within a quarter-mile of stop \(s \);

\(\beta_{MedHHIncSqr} \) is the coefficient on median household income within a quarter-mile of a stop squared;

\(MEDHHINCSQRD_s \) is median household income within a quarter-mile of stop \(s \) squared;

\(\beta_{Emp} \) is the coefficient on employment within a quarter-mile of a stop;

\(EMP_s \) is employment within a quarter-mile of a stop;

\(\epsilon_s \) is an error term

Route-level Analysis

Route-level analyses focus on route characteristics and performance measures. Route-level analysis casts everything in terms of routes. The main outcome variable for route-level analyses is *boardings per revenue hour*. Determinants of the outcome variable include length of route, speed of the bus along the route, and the number of stops along the route. Data which are inherently neighborhood-level or stop-level are converted into route-level data in a manner discussed below.

Since focus of route-level analysis is a key route performance measure – boardings per revenue hour, the regression model seeks to explain boardings per revenue hour as a function of various independent variables.

(4) \(Boardings\ per\ Revenue\ Hour_r = \beta_0 + \beta_{SPEED}SPEED_r + \beta_{PRI}PRI_r + \beta_{ServType}SERVTYPE_r + \epsilon_r \)

where

\(r \) is the route number;

\(\beta_0 \) is a constant;

\(\beta_{SPEED} \) is the coefficient on the speed (velocity) of the bus along route \(r \);

\(SPEED_r \) is the speed of the bus along route \(r \);

\(\beta_{PRI} \) is the coefficient on the Park-and-Ride Influence variable along route \(r \);

\(PRI_r \) is the Park-and-Ride Influence variable along route \(r \);

\(\beta_{ServType} \) is the coefficient on service type along route \(r \);
$SERVTYPE_r$ is the service type (e.g., “limited”) along route r;
ϵ_r is an error term.

Regression Results

The Authors present regression results for stop-level data and then for route-level data. The results are generated by separate but related datasets.

From the descriptive statistics it is clear that relative to their respective areas of operation, King County Metro (KCM) is the larger and more comprehensive system. KCM has more than twice as many stops, routes, and P&R spaces as VTA in Santa Clara. More than three times as many workers (almost 12%) commute by public transit in King County compared to Santa Clara County (3.6%). Average morning boardings are more than 4.5 times greater for KCM compared to VTA.

Stop-Level Results

For both KCM and VTA across all specifications of stop-level regression equations, all coefficients estimates are statistically significant (using robust standard errors) and of the expected sign. Generally, the story that emerges from OLS regression is consistent with the story that emerges from Poisson regression. Generally, all the coefficient estimates are larger in absolute value for KCM compared to VTA.

Table 5 gives the results for OLS regressions for KCM and VTA. Four regression results are reported in this table. These are the base line OLS regressions comparing KCM and VTA because the variables are identical for the pairs of regressions. In the upper panels of Table 5 regressions using the Quarter Mile Dummy to capture the effect of P&R are reported. In the lower panels of Table 5 regressions using the Quarter Mile Capacity variable to capture the effect of P&R are reported.
Coefficient estimates in OLS regressions are interpreted as marginal effects. That is, the coefficient on the variable Number of Bus Lines serving a stop represents the effect on the dependent variable (morning boardings) of a one-unit increase in the independent variable (number of bus lines serving a stop), holding all other variables constant. The coefficient estimates in the upper panels of Table 5 say that increasing the number of bus lines serving a stop by one bus line will increase morning boardings at that stop by about 6 riders in King County and by about one and a half riders in Santa Clara County. Both coefficient estimates are statistically significant.

For the Quarter Mile Dummy, the coefficient estimates are 11.29876 for KCM and 2.603722 for VTA. Both coefficient estimates are statistically significant. The coefficient on this dummy variable has the standard interpretation as a marginal effect. The presence of a park-and-ride lot within a quarter mile of a stop increases morning boardings at that stop by an average of 11.3 for KCM and by an average of 2.6 for VTA. (The average size of P&R lots differs in the two cases. For King County, the average sized park-and-ride lot has 196 spaces; for Santa Clara County, the average sized park-and-ride lot has 294 spaces. The average number of stops within a quarter mile of a park-and-ride lot also differs between the two systems. For KCM there is an average of about six stops within a quarter mile of a park-and-ride lot, while for VTA there is an average of almost eight stops within a quarter mile of a park-and-ride lot. However, KCM has many more lots and many more stops within a quarter mile. About 9.5% of KCM stops are within a quarter mile of a park-and-ride lot, while for VTA the corresponding figure is 7.9%.)

As expected, increasing median household income has a negative effect on boardings. Apparently, higher income people prefer to drive a car rather than take the bus. Increasing median household income by $10,000 for households within a quarter mile of a bus stop decreases ridership by about one-third of a rider. An increase in median household income by the same amount in Santa Clara County would reduce ridership by six-hundredths of a rider. An increase of $10,000 in median household income is a larger percentage of average income in King County than in Santa Clara County. This observation suggests that it would be better to estimate these comparative effects in terms of elasticities (percentage changes in boardings for a given percentage change in income). This topic will be addressed when Poisson regressions are discussed. Population density and number of employees residing within a quarter mile of a bus stop both have positive and statistically significant effects on ridership.

The lower panels of Table 5 give the OLS regression results for the same dependent variable but now the authors use a variable called the Quarter Mile Capacity variable to measure the effect of park-and-ride. The coefficient estimates are essentially the same as for the upper panel, except for the coefficient on the Quarter Mile Capacity variable. For KCM an increase of one space within a quarter mile of a stop increases boardings at that stop by 0.044 riders. For VTA the corresponding increase is 0.0055 riders. Both coefficients are statistically significant.

In Table 6, the authors present the results of Poisson estimation of the model. This table presents four regression results. The upper panels compare Poisson regressions for KCM and VTA using the Quarter Mile Dummy. The bottom panels compare Poisson regressions for KCM and VTA using a standard
distance-decay function with components representing capacity of the nearest park-and-ride lot and distance to the nearest park-and-ride lot.

Table 6. Poisson Regressions for KCM and VTA with Various Park-and-Ride Variables

In order to generate the most meaningful results, the authors used logarithmic transformations of population density, median household income, and number of workers within a quarter mile of a bus stop in all the Poisson regressions. The authors could not apply the logarithmic transformation to either the Quarter Mile Dummy or the Quarter Mile Capacity variable because they take on zero values for some observations. In the bottom panels of Table 6, the authors replace the Quarter Mile Dummy with a more standard distance-decay function that allows us to use the logarithmic transformation for both the capacity and the distance components.

Starting with the upper panel of Table 6, the authors see that the presence of a park-and-ride lot within a quarter mile of a stop leads to a 1.05% increase in boardings at that stop. Recall that for VTA there is an average of 4.7 stops within a quarter mile of a park-and-ride lot, while for VTA there is an average of 6.5 stops within a quarter mile of a park-and-ride lot. A 1% increase in density results in a 0.48% increase in boardings. Both results are highly statistically significant (z-values/t-stats of 9.81 and 8.78, respectively). By comparison, for VTA the presence of a park-and-ride lot within a quarter mile of a stop leads to a 0.75% increase in boardings at that stop. A 1% increase in density results in a 0.2% increase in boardings. Both results are highly statistically significant (z-values/t-stats of 7.11 and 4.1, respectively) but less statistically significant than for KCM.

The problem with the Quarter Mile Dummy (or the Quarter Mile Capacity variable) is that it is truncated at a quarter of a mile. An alternative is to define a distance decay-variable of the form (Capacity/Distance). A logarithmic transformation of the right-hand side of the Poisson equation gives two new variables, ln(Capacity) and ln(Distance), the logarithms of Capacity and Distance, respectively. These are defined for all observations, and have standard elasticity interpretations. For KCM, the results of incorporating the distance-decay formulation are:

For each 1% increase in spaces, the number of boardings at a stop at the average distance from a park-and-ride lot increases by 0.07%. The effect of increasing the number of spaces at a park-and-ride lot by 1% is strongly influenced by the distance of the stop from the park-and-ride lot. For each 1% increase in distance, the percent change in ridership at such a stop decreases by 0.3%. The effect of a 1% increase in
population density is about a 0.53% increase in boardings at a stop within a quarter of a mile of a stop. All the results are statistically significant with the results for distance and density especially so, suggesting that these variables are the most significant in determining the result.

For VTA the results are:

For each 1% increase in spaces, the number of boardings at a stop at the average distance from a park-and-ride lot increases by 0.04%. The effect of increasing the number of spaces at a park-and-ride lot by 1% is strongly influenced by the distance of the stop from the park-and-ride lot. For each 1% increase in distance, the percent change in ridership at such a stop decreases by 0.17%. The effect of a 1% increase in population density is about a 0.18% increase in boardings at a stop within a quarter of a mile of a stop. The results for distance and density are statistically significant, suggesting that these variables are the most significant in determining the result. The result for the number of spaces in a park-and-ride is of the expected sign but not statistically significant.

Results of Stop-Level Analysis
The coefficients from the stop level analysis of King County Metro and VTA illustrate that parking availability is a much stronger influence than residential density on the performance measure of boardings per stop. As shown in Table 7, across the KC Metro system, 23 more parking spaces within one quarter mile of an average bus stop have the same influence on boardings per stop as an increase in density of 990 more people per square mile for the housing within a quarter mile of the stop. The ratio of 990 to 23 is 43, suggesting that parking near bus stops is 43 times more influential than housing near bus stops. The ratio in San Jose for the same coefficients for VTA is 55, found by dividing 1013.2 by 18.3, which suggests parking is even more influential compared to nearby housing than is the case in the Seattle region.
Table 7. Calculating Incremental Impacts of Various Variables

Details and further explorations of the relative importance of park-and-ride compared to other variables, especially density, are provided in Appendix D.

Route-Level Regressions

In this section the authors present results of route-level regressions. The authors will discuss the results of the route-level analysis one transit system at a time. The dependent variable in all these regressions is boardings per revenue hour associated with the route.
Several variables above have been called “influence” variables, most notably the Park-and-Ride Influence variable. These influence variables arise from using neighborhood or stop-level data in a route-level analysis. P&R lots are associated with catchment areas about which the authors have some demographic and economic data. For example, the clientele of a particular P&R lot may come from several identifiable suburban areas. American Community Survey (ACS) data can be used to estimate the total number of residents in such an area who are employed. Total employees in the catchment area of a P&R lot can be used as a characteristic of the P&R lot, and also as a characteristic of routes that serve that P&R lot.

Likewise, specific stops can be associated with a P&R lot (say, those within walking distance of a park-and-ride lot). Stop-level data provides us with boardings by stop and by route. For a specific route, the authors can determine the fraction of total boardings along the route (at a particular time and in a particular direction) that arise from stops associated with a park-and-ride lot. This would allow us to construct a variable associated with the route that represents the total fraction of boardings at a particular time and in a particular direction that arise from stops close to park-and-ride lots.

The authors can construct more refined “influence” variables – variables that account for some characteristics of the park-and-ride lots, such as the total number of spaces in the lot.

The advantage of route-level analysis is that it can be cast directly in terms of what transit agency policy makers view as a key performance measure – boardings per revenue hour. There are, however, several disadvantages. There are fewer routes than stops, so compared to stop-level analysis, route-level analysis will always involve fewer observations (scores of observations as opposed to thousands of observations). Also, while it is possible to construct a variety of “influence” variables, these variables do not always have straightforward interpretations in the analysis. With any such influence variable, basically non-route data is being forced into a route mold.

Results of Route-Level Analysis

The results for King County Metro, Valley Transportation Authority, Los Angeles Metro, Community Transit of Snohomish County, and Pierce Transit are presented in this section.

King County Metro

The influence Park-and-Ride for King County Metro as measured by the total number of spaces at park-and-ride lots that a bus passes turns out to be statistically significant. The authors incorporate a quadratic term in the park-and-ride variable to account for any nonlinearities. Other variables include the speed of the bus and a dummy variable for the type of service. All the coefficient estimates are statistically significant (using robust standard errors) and are of the expected sign. The result is given in Table 8:
with a capacity of about 1,500 or more. Which routes are those?

Figure 4. The Marginal Effect of Park-and-Ride Capacity for KCM

So, roughly, park-and-ride capacity has a positive effect when the bus route passes park-and-ride lots with a capacity of about 1,500 or more. Which routes are those?

Table 8. Route-Level Regression for KCM

The service to the Seattle core has about 25 more boardings per revenue hour than non-Seattle core service, other factors held constant. A decrease of one mile per hour on the bus route decreases boardings per revenue hour by about one.

The effect of the total number of P&R spaces along the route is harder to interpret because the variable enters as a quadratic. To determine the marginal effect (the effect of one additional space along the route, the quadratic is graphed as a function of total spaces in Figure 4.
It turns out that the routes in the Seattle area that have Park-and-Ride capacity of 1,500 and above are in the bus routes numbered 200, that is, those that serve the Eastside suburbs of Seattle. These routes are analyzed separately in the next section.

Focused Case Study: King County Metro Transit

P&R is an important form of transit access in the Seattle suburbs. Sixty-two percent of suburban transit customers East of Lake Washington used P&R in the last 30 days before the date of a recent survey. Thirty-nine percent of surveyed customers across all parts of the greater Seattle service area used P&R.

The regional Metropolitan Planning Organization, Puget Sound Regional Council, reports that since 2010, “Park and Rides fill earlier and more frequently.”

Figure 5, a Metro route map with the City of Seattle on the left and the Eastside suburbs on the right, shows all the Metro bus stops that experienced over 250 boardings in the morning peak period in spring 2014. Green numbers are morning boardings divided by 10. Across Lake Washington, East from the City of Seattle, large P&R facilities are prominent among highly used suburban bus stops, with parking capacities shown in red.

Figure 5. Seattle and East King County bus stops with more than 250 A.M peak boardings

The authors chose the 53 King County Metro Eastside routes as the target for exploration of P&R influence on productivity because of data availability and the authors’ personal knowledge that P&R is well used in this part of the Puget Sound region. Also, there is evidence from the analysis earlier in this report that the routes serving the Seattle eastern suburbs are routes most influenced by park & ride.
availability. Most of the lots in this sector are filled to capacity before the morning peak period is over. The authors’ data included the 200 series of Metro routes, eight Sound Transit 500 series regional routes operated by Metro under a contract with the Sound Transit multi-county, regional transit agency, and one of Metro’s arterial BRT routes, RapidRide B in City of Bellevue.

As before, boardings per service hour are selected as the productivity performance measure, a well-recognized ratio of production to resources. The focus is on analyzing morning peak inbound runs from residential areas to urban centers as a likely indicator of all-day P&R influence, since the typical and overwhelmingly common pattern of usage is all-day parking beginning in the morning.

The authors sought out how to measure the influence of P&R on ridership of each particular route in a more precise way than used in the study of all the King County Metro routes, described above. The focus was on the morning peak direction, meaning from lower density residential areas toward employment centers such as downtown Seattle, downtown Bellevue, and the University of Washington main campus. The authors started by simply creating a dummy variable: routes that went by P&R lots were coded as “1” and those that did not as “0.” While using this dummy variable picked up some influence, at the urging of King County Transit staff the authors dug deeper to measure the percentage of ridership on a route that is collected at the bus stops next to P&R facilities, which was then set as the P&R Influence Variable. That number could range in theory from zero if the route did not serve go by any P&R lots, or it could be 100 percent if all the passengers on a route boarded at the parking lot. In fact, after examining boardings at every P&R lot, this measure ranged from zero to 97 percent. Twelve of the 53 routes in the data set did not pass by significant park-and-ride facilities. Forty-one routes passing by P&R facilities of more than 100 spaces have influence measures between two percent and 97 percent. Table 9 shows the value of the P&R influence variable for the entire sample of 53 Routes.

<table>
<thead>
<tr>
<th>Route</th>
<th>Coding</th>
<th>Route</th>
<th>Coding</th>
<th>Route</th>
<th>Coding</th>
<th>Route</th>
</tr>
</thead>
<tbody>
<tr>
<td>200</td>
<td>0.00</td>
<td>218</td>
<td>0.86</td>
<td>243</td>
<td>0.00</td>
<td>271</td>
</tr>
<tr>
<td>201</td>
<td>0.00</td>
<td>219</td>
<td>0.67</td>
<td>244</td>
<td>0.26</td>
<td>277</td>
</tr>
<tr>
<td>202</td>
<td>0.17</td>
<td>221</td>
<td>0.00</td>
<td>245</td>
<td>0.02</td>
<td>522 (ST)</td>
</tr>
<tr>
<td>203</td>
<td>0.00</td>
<td>224</td>
<td>0.18</td>
<td>246</td>
<td>0.00</td>
<td>540 (ST)</td>
</tr>
<tr>
<td>205</td>
<td>0.25</td>
<td>226</td>
<td>0.00</td>
<td>248</td>
<td>0.22</td>
<td>542 (ST)</td>
</tr>
<tr>
<td>208</td>
<td>0.00</td>
<td>232</td>
<td>0.36</td>
<td>249</td>
<td>0.10</td>
<td>545 (ST)</td>
</tr>
<tr>
<td>209</td>
<td>0.02</td>
<td>234</td>
<td>0.17</td>
<td>250</td>
<td>0.00</td>
<td>550 (ST)</td>
</tr>
<tr>
<td>210</td>
<td>0.61</td>
<td>235</td>
<td>0.30</td>
<td>252</td>
<td>0.47</td>
<td>554 (ST)</td>
</tr>
</tbody>
</table>
Table 9. P&R Influence Variable for 53 KCM Routes

Metro staff mentioned that the influence being measured would also blend in customers who did not drive a vehicle to the P&R lot, but rather walked from nearby housing, or rode a bicycle. In fact, Metro has lately been pursuing a policy of encouraging transit customers to arrive with passengers in their vehicle. This point slightly obscures the influence of car drivers using P&R lots compared to other ways of arriving, but the main point is the aggregation of customers ready to ride at a limited number of places, no matter how they reach the collection points.

Figure 6. Bus Route Productivity in East King County, Washington

The correlation of the P&R influence variable with the productivity measure is 0.68 and P&R influence alone explains 47% of the variation in Boardings per Service Hour, as shown in Figure 6.

In order to explain more of the influences on boardings per service hour, the authors experimented with adding other variables to the regression analysis, and following trial and error found two other variables for a linear equation that estimates annualized peak period boardings per revenue hour. The additional variables are all-day boardings per route mile and bus stops per mile over the entire route of the bus.
The authors expected all-day boardings per route mile to push up boardings per service hour since this is a simple measure of ridership proportional to the length of the route. Bus stops per mile was expected to drive down boardings per service hour, because small numbers of passengers spread over many bus stops would tend to slow the speed of the bus. In the case of both variables, this is how the equation turned out.

When the authors ran all three of the variables in a linear regression calculation, the adjusted R-squared equaled 0.90 with all of the coefficients of the equation statistically significant at $p<.01$ and the constant significant at $p<0.1$. This is the strongest model found across all five of the case study agencies.

The model developed for the 53 King County Metro routes:

\[
\text{(5) Annualized peak period boardings per hour} \\
= \beta_0 + \beta_1 (AM \ Park – and – Ride \ Influence \ Fraction) \\
+ \beta_2 (All – day \ boardings \ per \ route \ mile) \\
+ \beta_3 (Stops \ per \ mile \ over \ entire \ route) + \epsilon
\]

where

$\beta_0 = 7.9, \beta_1 = 16.6, \beta_2 = 15.5, \text{and} \beta_3 = -2.4$.

The constant can be considered to provide an estimate of other undetermined influences on bus service productivity as measured by boardings per service hour.

Economic Consequence of Higher Productivity from Transit Access at P&R Lots

Going further, the authors realized that the model of P&R influence on the productivity measured in boardings per bus service hour permits a calculation of what P&R is worth in dollar terms as a means of aggregating passengers.

The coefficient on park-and-ride influence, when multiplied by the value of the influence variable for each route, represents the marginal P&R contribution to boardings per service hour.

Here is an example of how the model equation can be interpreted for one route: For Metro route 210, with P&R generating 61% of the morning peak customers, the data reveal that this line achieved 44.5 boardings per service hour across 2,288 service hours in a year. The marginal influence of P&R from the coefficient of 16.6 on P&R influence in the regression estimation is 10.2 boardings per service hour, that is, 16.6 times 61%. This 10.2 boarding per service hour over the course of a year is equivalent to saving 678 service hours.\(^{25}\)

Let X be the number of hours of saving, which is already stated as 678 service hours. To derive this number, the problem at hand is to solve for X where

\[
(6) \ (H + X) \times (P_1 - P_2) = H \times P_1
\]

$P_1 = 44.48$ boardings per hour

42
\[P2 = 10.17 \text{boardings per hour} \]

\[H = 2,288 \text{ hours} \]

By algebraic manipulation,

\[(7) \quad X = \frac{HP^2}{(P1 - P2)}. \]

After substituting data for variables, \(X = 678.2 \)

For this one Metro route, when 678 hours of saving is multiplied by the $262 per service hour operating cost of route 210, an annual dollar savings for this one route from P&R influenced operations comes into view, in this case, $178,000.

The contribution of the 41 routes individually sums to 49,562 service hours saved in reaching the overall ridership achieved. The multiplication of the service hours array for the 41 routes where there is P&R influence multiplied by the cost per hour array for the same 41 routes yields an array of cost savings that sum to approximately $17 million.

Summing across all the routes, 49,562 service hours are saved annually by the 41 routes out of 53 stopping at P&R facilities. These hours are worth $17 million using available Metro cost data. In other words, if the beneficial impact of the P&R facilities were not present, instead of $95 million actually spent, $112 million in service hours would be spent on the 53 routes. The $17 million difference is 15% of $112 million.

This theoretical saving would be partially actualized in a transit agency like King County Metro to the degree that service to customers from operating buses on the streets of dispersed residential neighborhoods were replaced with more service from P&R facilities to which those residents would drive. On the margin, bus VMT would be reduced because the buses would have fewer miles traveling in residential areas. Private vehicle VMT might very well rise as more bus customers drive to P&R facilities rather than wait to be picked up by a bus that comes to them closer to home. The public policy trade-off of reduced public transit vehicle VMT for more private vehicle VMT would have to be considered in assessing the public costs and benefits of emphasizing P&R-based service.

Santa Clara Valley Transportation Authority, San Jose, California

The authors estimated a regression using route-level productivity data for bus service for VTA. Speed by route data was not available. The route-level regression for VTA is given in Table 10.
Type of service is very statistically significant. The holdout category for bus service is community buses. Neither of the terms associated with total P&R spaces along the route is statistically significant. In a regression with just the linear term for total P&R spaces, the coefficient estimate is also not statistically significant.

In explaining the lack of structural similarity in the empirical analysis of the two case studies the authors note that the overall reported bus boardings per service hour in the most recent National Transit Database summary (2013) shows VTA at 27 while King County Metro (KCM) is 33 percent higher at 36 boardings per service hour. In other words, VTA buses operate at a lower level of productivity which may be based on less use of buses by car drivers compared to KCM, a difference that in turn comes from lower availability of parking spaces at VTA (1,448 per 100,000 workers) than at KCM (1,624 per 100,000 workers), as reported above. Also, parking in the VTA network is more supportive of light rail access at multiple stations than is the case with KCM, where only one P&R serves light rail access.

Most of the larger P&R facilities are aligned along the Gilroy-Morgan Hill-San Jose corridor, which is also served by the CalTrain commuter rail. Other P&R lots serve VTA’s light rail lines as well as the bus routes, which apparently confounds the influence of P&R influence on bus boardings per service hour. Another issue for data analysis is that a number of bus lines in the morning peak period pass through and go beyond the most important work center destinations like downtown San Jose, so that the ridership of a line in the morning represents the daily peak for part of the route, and off peak for the tail of the route. So while the stop-level analysis revealed an influence of parking on ridership, we did not find an influence on route productivity.

Los Angeles County Metro
In this section the authors present route-level results for LA Metro. The focus is on local bus service for which boardings per service hour and ridership data are available. The average daily ridership data are from December 2014. The authors employ both OLS and Poisson regressions using alternative dependent variables of boardings per service hour and average daily boardings. Also employed are

Table 10. VTA Route-Level Regression

| | Coef. | Std. Err. | t | P>|t| | [95% Conf. Interval] |
|---------------------------|-------|-----------|-------|------|----------------------|
| Number of Parking Spaces Along Route | 0.002593 | 0.0073608 | 0.35 | 0.726 | -0.0121773 .0173636 |
| Number of Parking Spaces Along Route Squared | -4.62E-06 | 6.08E-06 | -0.76 | 0.451 | -0.0000168 .759E-06 |
| Service Type: Core | 8.324875 | 1.516724 | 5.49 | 0.000 | 5.281347 11.3684 |
| Service Type: Limited | -4.51536 | 1.59985 | -2.82 | 0.007 | -9.03072 15.92755 |
| cons | 19.48711 | 1.773858 | 10.99 | 0.000 | 15.92755 23.04667 |
alternative measures of park-and-ride influence: the total number of park-and-ride spaces at stops within a quarter mile of stops along the bus route and the total number of park-and-ride lots along the bus route.

First OLS results using boardings per revenue hour are considered as the dependent variable. The results with total spaces along the route (entered as a quadratic term) are:

\[
\text{. regress BperRH TotalSPACENum TotalSPACENumSqd RouteLengthMi, robust}
\]

Table 11. OLS Regression with Boardings per Revenue Hour as Dependent Variable and Total Park-and-Ride Spaces along Route as Park-and-Ride Influence Variable

The coefficient estimates on the park-and-ride variables are very statistically significant and the coefficient on the route length in miles is nearly statistically significant. The route length coefficient is negative and indicates that an increase in route length of one mile decreases boardings per revenue hour by 0.44.

The impact of increasing the total park and ride spaces available along a route is given by the following graph.

![Graph showing the impact of increasing total park and ride spaces on additional boardings per revenue hour.](image)
Figure 7. Impact of Total Park-and-Ride Spaces along a Route

The effect of additional spaces is always positive and peaks at more than 20 additional boardings per revenue hour when there are about 2000 total park-and-ride spaces along the route. (The figure is drawn over the relevant range of total park-and-ride spaces in the data.)

Using the alternative park-and-ride variable, the number of park-and-ride lots within a quarter of a mile of stops along the bus route, gives the following result:

```
. regress BperRH CountPnR RouteLengthMi, robust
```

| CountPnR | Coef. | Std. Err. | t | P>|t| | 95% Conf. Interval |
|----------------|--------|-----------|-------|------|-------------------|
| RouteLengthMi | -.4256 | .2323 | -1.83 | 0.078| -.903285 to .0510956 |
| _cons | 57.60 | 8.78 | 6.56 | 0.000| 39.57883 to 75.63121 |

Table 12. OLS Regression with Boardings per Revenue Hour as Dependent Variable and the Number Park-and-Ride Lots along Route as Park-and-Ride Influence Variable

Again, the route length is nearly statistically significant and the coefficient is negative and indicates that an increase in route length of one mile decreases boardings per revenue hour by 0.43, about the same influence as the previous model. The park-and-ride influence variable is statistically significant and indicates that the addition of a park-and-ride lot of average size along a route increases boardings per revenue hour by just over 5.

Regression analysis of influence on the numerator of the ratio boardings per revenue hour, namely, Average Daily Boardings, reveals that it is the driver of productivity. The data on Average Daily Boardings are counts as opposed to ratios, so Poisson regression can be used in addition to OLS.

Using Average Daily Ridership as the dependent variable and total spaces along the route as the park-and-ride influence variable (analogous to the treatment for boardings per revenue hour, above), this result is obtained:
Table 13. OLS Regression with Average Daily Riders as Dependent Variable and Total Park-and-Ride Spaces along Route as Park-and-Ride Influence Variable

In this case the park-and-ride influence variables are statistically significant, and the route length variable is insignificant. The coefficient values are much larger than was the case for boarding per revenue hour, but that is because the ridership variable is orders of magnitude larger (as indicated by the descriptive statistics). The park-and-ride impact is indicated in the following graph.

![Figure 8. Impact of Total Park-and-Ride Spaces along a Route](image)

The figure looks very similar to Figure 7. However, note that the vertical axis has different units, total boardings instead of boardings per revenue hour. Again, adding park-and-ride spaces along a route yields positive additions to ridership over the relevant range, with a peak at about 2000 spaces, the same maximum point as with boardings per revenue hour as the dependent variable.

The regression using the number of park-and-ride lots along a route gives:
Table 14. OLS Regression with Average Daily Riders as Dependent Variable and the Number Park-and-Ride Lots along Route as Park-and-Ride Influence Variable

The coefficient estimate on the number of park-and-ride lots along a route is positive and statistically significant, and indicates that an additional average sized park-and-ride lot along the route contributes over 2300 additional daily riders.

The Poisson regression results are given in the table below.

Table 9. Poisson Regression with Average Daily Riders as Dependent Variable and Total Park-and-Ride Spaces along Route as Park-and-Ride Influence Variable

Again, the results indicate a statistically significant effect of total park-and-ride spaces along the route. The probability of a boarding along the route by adding a park-and-ride space is given in Figure 9.
Community Transit, Snohomish County Results
For Community Transit, ordinary least squares regression was used on all of the agency’s 49 AM peak routes, including six operated for Sound Transit, the regional mass transit agency. After experimentation with several models, the best fit found for explaining boardings per service hour is the equation

\[(8) \text{Boardings per service hour} = 18.1 + 11.5 \times P&RInfluence\]

where P&RInfluence is measured simply by a dummy variable, zero or one, signifying whether a route explicitly serves one of the listed park-and-ride facilities named by the Community Transit agency, coded as a one. This variable was coded one for 36 of the 49 routes. The regression equation indicates that a route serving Park and Ride exhibits a boarding per service hour that is 11.5 higher than routes that don’t serve park-and-ride. The R squared for this equation is 0.16 and both the P&R coefficient and the constant were highly significant, as well as the entire equation as signified by F=8.7, p=.005.
Table 16. Regression Summary, Community Transit, AM Peak Route Sample

Pierce Transit Results
With Pierce Transit, the authors again were limited in data available, but did code all 50 AM routes for park-and-ride influence, including the 14 series 500 routes operated under a contract from Sound Transit. We examined bus routes and rated those that served park & ride lots as “1” and those that did not as “0.” The authors examined all the routes and found that 29 of them served P&R facilities. Again an ordinary least square model equation for boardings per service hour was utilized, which found this result.

(9) Boardings per service hour = 18.4 + 4.2 * P&R Influence

In this case, the R-squared was 0.06 and the coefficient for P&R influence was positive but statistically significant only at the level of p=.08, t=1.8. The constant was highly significant at t=10.2. The complete equation showed F=3.2 with a significance of p=.08
Summary with Conclusions and Implications

The authors have developed through this research some quantitative methods to link the existence and influence of park & ride facilities to transit performance measures, in particular, boardings per service hour on a route that serves a P&R facility. As the proportion of riders on a bus coming from P&R facilities rises, it appears from this evidence that in some agencies, boardings per revenue hour rise.

Park- and-ride service, including the effect of customers who arrive at P&R collection points by other means than a parked car, can be more cost effective in generating bus ridership in a suburban setting than service that does not take advantage of P&R. The authors showed this for four case studies out of five. There was evidence of potential for savings in the three Seattle area bus systems, and with Los Angeles Metro. The result was not so clear for Santa Clara Valley Transportation Authority.

Where the P&R differential influence can be shown, the quantified measure of economic benefit for the operations of a transit agency, like the authors showed for a set of suburban routes of King County Metro, may spur management interest in expanding and improving park and ride service to grow transit ridership within the market of frustrated commuters who seek but cannot find space to park in P&R lots.

At the same time, the strong demand for P&R suggests customers may be willing to pay for it, especially if high quality amenities were to be included, such as guaranteed access to a parking spot in the lot, a short walk to the bus, and a guaranteed seat on the bus.

Transit agencies often view P&R as an expensive source of riders. For example, a range of thirty to fifty thousand dollars to build each structured parking space is mentioned by transit officials in Seattle. Non-motorized access, for example, walking and bike access from close to where the bus stops, is better for the environment than driving from father away. However, given the reality of how urban regions
disperse, and given the popularity of P&R, agency and societal objections to a supply of parking spaces that keeps up with demand can perhaps be mitigated. That this type of access can be shown to have a quantifiable financial benefit from increasing the productivity of bus service is a useful first step in mitigation.

Additional elements of mitigation for expanding P&R sustainably:

- Special treatment for smaller, cleaner cars, to motivate purchase of such vehicles by transit customers. The pollution, safety, and congestion negatives of cars are subject to extensive regulation-driven mitigation via improved technology over the coming decades (Committee on Transitions to Alternative Vehicles and Fuels, National Research Council, 2013).

- Users could be required to pay to park in exchange for receiving additional amenities, like a parking space closer to the bus stop and a guaranteed seat on the bus. In Seattle, P&R parking has been traditionally free; in California, there is a mix of free and paid parking across P&R facilities.

- Provide incentives for vehicles with multiple passengers.

Although transit agencies may not be in a position to fund P&R expansion out of their current funding stream, the authors note that customer parking fee payments providing a return on private investment capital for expanded P&R construction is a potential mechanism for more capacity on the urban fringe.

The authors have created a parking fee estimator that calculates a total daily fee to cover the repayment of a construction loan plus a daily maintenance fee for a structured parking space like would be found in a new P&R facility. For example, assuming $30,000 borrowed at 5% interest over 30 years to construct a parking space and $500 per year to manage and maintain it, including cleaning, security, and daily parking fee collection, the fee estimator shows that a daily fee of $10.24 would cover costs over 250 annual work days at 95% occupancy. The fare to ride the bus is not included. Because a price to park at this level may be a shock compared to a previous environment of free or nominally-priced parking, this level would only work if it provided a significant discount from downtown parking fees, and furthermore supported features such as watchful security preventing car prowls and guaranteed seating on the bus.

Other assumptions can be tested, and the authors have found that the parking fee under a range of assumptions is likely less than the price of parking in a city downtown such as Seattle or San Jose. Of course to attract customers, the P&R fee combined with the transit fare would have to provide an attractive alternative to competition from private vehicle modes that have a price defined by many exogenous component price levels beyond parking, such as for gasoline or for fees to join a car pool. At the same time, even assuming the commuter does not have regular passengers that would provide benefits for driving in an HOV, there are a host of other real-world conditions that bear on the decision a commuter would make beyond comparing the cost of parking on the fringe of an urban area versus close by an employment-site destination. For example, a traveler may simply prefer the environment sitting in her car, despite driving in congestion, compared to the environment of sitting or standing on
bus. Or there may be accustomed intermediate stops traveling to or from work that are easier to make in a private vehicle than in a multi-stop transit trip.

At the same time the authors acknowledge other approaches to transit access work well in some markets, for example, walkable transit oriented development with bicycle access as well. However, low-density suburbs exist and cannot be picked up and moved. This paper shows a financially sustainable, transit-supportive way to deal with the reality of suburban, car-oriented development beyond the transit-oriented-development market segment.

In conclusion, the authors recommend the agencies consider engaging in analysis aimed at staff understanding and quantifying the economic benefit of P&R to the operations for a transit agency, especially those having choices of whether to provide more or less service via P&R. Available quantitative information collected by transit agencies likely permits this to be accomplished, and as shown in this report, can have operational benefit.

Suggestions for Further Research

Both the differences and the similarities between the findings in San Jose and in the Seattle area suggest that there may be additional learning in analyzing park-and-ride usage for bus system efficiency in other urban regions of North America. The methodologies in this study could be applied to any other urban region where data is available to enrich the level of understanding of how aggregating transit customers at P&R facilities generates operational efficiencies in transit operations.

In particular, it would be interesting to locate a public transit agency in North America or Europe where park-and-ride is encouraged with the supply of parking spaces managed for all-day availability through ample supply responding to growth in demand, and by pricing and then examine boardings per service hour in both peak and off-peak periods throughout the day.

As of 2016, there are a growing number of small-vehicle alternatives available to commuters in new forms of commercially-offered, smart-phone enabled car-sharing, ride-sharing, and internet-dispatched ride services that in principle can be used by travelers to reach transit hubs with frequent bus service. The claim has been made that these services are ideal for building transit ridership without adding all-day parking at hubs. This hope should be subject to measurement to validate the potential for public policy encouragement and support because of beneficial influence on boardings per service hour (Shared Use Mobility Center 2016).
References

Florida Planning and Development Lab, Transit-Oriented Development: “A Literature Review of Bus Passenger Facility Planning, Siting, and Design.” Department of Urban and Regional Planning, Florida State University, March 2004

Qian, Zhen (Sean), and Michael Zhang, (2011), “The economics of parking provision for the morning commute”, *Transportation Research Part A*, Vol.45(9), pp. 861-879

Shared-Use Mobility Center, "Shared Mobility and the Transformation of Public Transit," American Public Transportation Association,
Accessed April 8, 2016.

Turnbull, Katherine; John Evans, and Herbert Levinson, “Park-And- Ride/Pool: Traveler Response to Transport System Changes,” Chapter 3; Report 95, Transit Cooperative Research Program; Transportation Research Board, 2004

Appendix A. The Case Studies

King County Metro Transit (KCM)

King County Metro Transit is the largest public transit agency in the Seattle region of Washington State, serving all of King County, which includes the cities of Seattle and Bellevue. Metro in 2013 operated 984 diesel and 131 electric trolley buses, the latter all within City of Seattle. Across the entire region, the agency maintains 130 P&R lots serving about 20,000 customers per day. As a special focus of this study, a selected part of the diesel-electric-hybrid bus network where 20 large P&R lots are well used -- east King County, across Lake Washington from Seattle -- is also studied. This part of the Metro service territory is covered by the 200 series of bus routes. We also included the Sound Transit Regional Express 500 series, which are limited-stop express buses that travel in this East County part of the network. These buses are operated under contract by Metro.

Santa Clara Valley Transportation Authority (VTA)

Santa Clara VTA is the public transit network for Santa Clara County in California, in which San Jose is the largest city, along with smaller cities such as Palo Alto and Mountain View. This network serves Silicon Valley.
Valley, one of the US’s premier technical industry areas. VTA in 2013 operated 371 motor buses serving a 326 square mile urbanized area, and also operated a 42-mile light rail network. VTA serves 40 park-and-ride lots, most of which are operated by the agency, but some are operated by the commuter railroad CalTrain.

Figure A.2. Santa Clara VTA Selected Bus Routes and Park-and-Ride Lots

Los Angeles County Metropolitan Transportation Authority
LA Metro is the public transit network for Los Angeles County, in which Los Angeles is the biggest city, while Long Beach and Santa Monica are among prominent smaller jurisdictions. The service area is 1,433 square miles, home to nearly one-third of California residents. LA Metro operates 1,860 motor buses, as well as commuter trains, a heavy rail subway, and light rail. There are around 150 park-and-ride lots, many of which are located near rail stations.
Figure A.3. Los Angeles Metro Selected Bus Routes and Park-and-Ride Lots

Community Transit (Snohomish County, Washington)
Community Transit is one of two public transit agencies serving Snohomish County, the part of the Seattle region adjacent to King County to the North. City of Everett has its own bus system, which is not part of this research. This study includes all of the 178 buses operated by Community Transit, which includes local service with many bus stops, as well as a fleet of commuter buses that serve 45 park-and-ride lots north of Seattle and end morning runs in downtown Seattle and at the University of Washington campus north of downtown. Some of the buses which Community Transit operates belong to Sound Transit’s Regional Express 500 series service into downtown Seattle and downtown Bellevue.

Legend
Park-and-Ride Lots
Number of Spaces
- 26 - 102
- 103 - 244
- 245 - 481
- 482 - 980
- 981 - 2018

Local CBD Buses
Boardings per Revenue Hour
- 17,800,000
- 17,800,001 - 40,100,000
- 40,100,001 - 50,720,000
- 50,720,001 - 57,320,000
- 57,320,001 - 71,520,000
Figure 1. Map of the Community Transit System
Source: Community Transit, Snohomish County, Washington
Pierce Transit (Tacoma, Washington and Vicinity)
Pierce Transit is the public transit agency operating south of Seattle that serves Pierce County, in which the largest city is Tacoma. The Pierce Transit operates a fleet of 106 motor buses serves local routes in the urbanized parts of the County. In addition, as is the case with King County Metro and Community Transit, Pierce operates some of the Sound Transit Regional Express 500 series buses that take morning commuters to downtown Seattle and downtown Bellevue. The agency serves 30 P&R lots.32

Figure A.5. Map of the Pierce Transit System
Source: Pierce Transit, Lakewood, Washington33
Appendix B. A Heuristic Example of Route-Level and Stop-Level Analysis

To conceptualize our empirical analysis, consider the following heuristic example (Figure B.1).

LEGEND
- Dots = bus stops (numbers indicate stop number)
- Yellow dots = stops associated with park-and-ride lots
- Red dots = employment centers
- Dashes = bus routes
- Solid lines = inbound
- Dashed lines = outbound
- Rectangles = municipalities (indicated by letters)
- Rounded rectangles = catchment areas of Park-and-Ride lots

![Heuristic Public Transit System](image)

Figure B.1. Heuristic Public Transit System

Figure B.1 shows six bus routes (green, dark blue, purple, red, light blue, and orange) in each of two directions: inbound and outbound. All the routes except two (dark blue and red) connect directly to an employment center. Two of the routes (green and light blue) are served directly by park-and-ride lots. Ridership on all routes except orange may be affected by park-and-ride lots because of transfers. The clientele of stops associated with park-and-ride lots may come from car commuters from the catchment area of the park-and-ride lot, or from “feeder” lines. There are 15 stops, some serving more than one line. For a given route, time, and direction, each stop on a route has is a sequence number, i.e., the order in which that stop appears in that route, time, and direction. (Typically, inbound and outbound busses use different stops – usually on opposite sides of the street. The authors have eliminated that complication in our heuristic model.)
This heuristic framework yields the following data concerning sequence numbers:

INBOUND SEQUENCE NUMBERS

<table>
<thead>
<tr>
<th>STOPS</th>
<th>Green</th>
<th>Dark Blue</th>
<th>Purple</th>
<th>Red</th>
<th>Light Blue</th>
<th>Orange</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td>3</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

OUTBOUND SEQUENCE NUMBERS

<table>
<thead>
<tr>
<th>STOPS</th>
<th>Green</th>
<th>Dark Blue</th>
<th>Purple</th>
<th>Red</th>
<th>Light Blue</th>
<th>Orange</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td>1</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

Table B.1. Inbound and Outbound Sequence Numbers Implied by the Heuristic Public Transit System
For the framework outlined above, assume that the following represents boardings data for the morning commute.

Table B.2. Hypothetical Boardings Data for the Heuristic Public Transit System

The basic data in the table (blue background) is the hypothetical inbound boardings data. The data, while entirely hypothetical, nonetheless reflect some assumptions. First, only commuting toward employment centers occurs. Thus, there are zero boardings at the terminus of each route. Second, boardings at park-and-ride affiliated stops are larger than at other stops (and roughly proportional to the capacity of each park-and-ride lot). The length of the routes (gold background) is a given (and corresponds roughly to the lengths of the routes indicated in Figure B.1).

The values with a green background are “computed values” – values computed from the basic boardings matrix and length variables. Summing by rows gives aggregates by route. These route-level variables...
appear in the cells with a green background below the gold highlighted row. Stop-level variables are computed for each stop based on data in each row of the blue background data. The stop-level variables appear in the green background area to the right of the blue background boardings data. Basically, route-level analysis deals with row aggregates, and stop-level analysis deals with column aggregates. There are possibilities for introducing some row-aggregate data into column aggregates, and vice versa, as discussed later in this report.

Route-Level Analysis and Stop-Level Analysis
The hypothetical data illustrate the two kinds of analysis employed in this paper: route-level analysis and stop-level analysis. Route-level analysis examines the characteristics of routes. In the heuristic illustration there are six routes. Based on the data represented above for these routes, stop data can be aggregated for routes to obtain the route-level data set, indicated below.

<table>
<thead>
<tr>
<th>Route</th>
<th>BOARDINGS PER REVENUE HOUR</th>
<th>LENGTH</th>
<th>SPEED</th>
<th>NUMBER OF STOPS</th>
<th>P&R Influence</th>
<th>P&R Dummy</th>
<th>P&R Capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Green</td>
<td>365.217391</td>
<td>11.5</td>
<td>20</td>
<td>7</td>
<td>0.71428571</td>
<td>1</td>
<td>70</td>
</tr>
<tr>
<td>Dark Blue</td>
<td>2025</td>
<td>1</td>
<td>45</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Purple</td>
<td>293.333333</td>
<td>6</td>
<td>40</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Red</td>
<td>2115</td>
<td>1</td>
<td>45</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Light Blue</td>
<td>1093.84615</td>
<td>6.5</td>
<td>30</td>
<td>5</td>
<td>0.42194093</td>
<td>1</td>
<td>45</td>
</tr>
<tr>
<td>Orange</td>
<td>1350</td>
<td>4</td>
<td>45</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Table B.3. Boardings per Revenue Hour and Related Data for the Heuristic Public Transit System

Using this data, a regression model can be estimated with Boardings per Revenue Hour as the dependent variable, and the remaining variables as independent variables. The dependent variables may include two of the three variables indicated in red font, and one of the variables indicated in blue font. SPEED is determined by LENGTH and NUMBER OF STOPS, so it cannot be included in a regression with either of the other two because of collinearity. (LENGTH and SPEED is used.) Similarly, any two of the variables in blue font are collinear. (P&R INFLUENCE is used in this example.)

The estimates for the route-level regression are:
SUMMARY OUTPUT

<table>
<thead>
<tr>
<th>Regression Statistics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiple R</td>
</tr>
<tr>
<td>R Square</td>
</tr>
<tr>
<td>Adjusted R Square</td>
</tr>
<tr>
<td>Standard Error</td>
</tr>
<tr>
<td>Observations</td>
</tr>
</tbody>
</table>

<p>| ANOVA |</p>
<table>
<thead>
<tr>
<th>df</th>
<th>SS</th>
<th>MS</th>
<th>F</th>
<th>Significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>3058828.549</td>
<td>1019610</td>
<td>178.9266</td>
<td>0.005563</td>
</tr>
<tr>
<td>2</td>
<td>11396.95612</td>
<td>5698.478</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>3070225.505</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Coefficients</th>
<th>Standard Error</th>
<th>t Stat</th>
<th>P-value</th>
<th>Lower 95%</th>
<th>Upper 95%</th>
<th>Lower 95.0%</th>
<th>Upper 95.0%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>-3387.714696</td>
<td>-2.5574</td>
<td>0.124884</td>
<td>-9087.13</td>
<td>2311.704</td>
<td>-9087.13</td>
<td>2311.704</td>
</tr>
<tr>
<td>LENGTH</td>
<td>-225.6807971</td>
<td>-8.02574</td>
<td>0.015172</td>
<td>-104.692</td>
<td>-346.67</td>
<td>-104.692</td>
<td>-346.67</td>
</tr>
<tr>
<td>SPEED</td>
<td>125.8014856</td>
<td>4.375176</td>
<td>0.048474</td>
<td>2.085303</td>
<td>249.5177</td>
<td>2.085303</td>
<td>249.5177</td>
</tr>
<tr>
<td>P&R Influence</td>
<td>5310.361941</td>
<td>7.215815</td>
<td>0.01867</td>
<td>2143.894</td>
<td>8476.83</td>
<td>2143.894</td>
<td>8476.83</td>
</tr>
</tbody>
</table>

Table B.4. Route-Level Regression Result for the Heuristic Public Transit System

Each of these variables has the expected sign and significance. Boardings per revenue hour decline with the length of the route, and increase with speed along the route. The P&R influence variable (the percentage of total boardings occurring at a stop associated with a park-and-ride lot) is positive and strongly statistically significant.

Exactly the same data can be used to estimate an alternative regression equation, using stop-level data (based on column sums). The dependent variable is boardings per stop. Possible independent variables include a P&R DUMMY variable or a P&R CAPACITY variable, and the NUMBER OF ROUTES serving a particular stops. The P&R DUMMY and the P&R CAPACITY are collinear. P&R CAPACITY is employed in the example. Looking at boardings per stop in the hypothetical data referred to above allows estimating the stop-level regression given by:
SUMMARY OUTPUT

<table>
<thead>
<tr>
<th>Regression Statistics</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiple R</td>
<td>0.73030262</td>
</tr>
<tr>
<td>R Square</td>
<td>0.533341917</td>
</tr>
<tr>
<td>Adjusted R Square</td>
<td>0.455565569</td>
</tr>
<tr>
<td>Standard Error</td>
<td>33.72753303</td>
</tr>
<tr>
<td>Observations</td>
<td>15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ANOVA</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>df</td>
<td>SS</td>
</tr>
<tr>
<td>-------</td>
<td>-----------</td>
</tr>
<tr>
<td>Regression</td>
<td>2</td>
</tr>
<tr>
<td>Residual</td>
<td>12</td>
</tr>
<tr>
<td>Total</td>
<td>14</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Coefficients</th>
<th>Standard Error</th>
<th>t Stat</th>
<th>P-value</th>
<th>Lower 95%</th>
<th>Upper 95%</th>
<th>Lower 95%</th>
<th>Upper 95%</th>
</tr>
</thead>
<tbody>
<tr>
<td>P&R Capacity</td>
<td>1.711738747</td>
<td>0.490879892</td>
<td>3.487083</td>
<td>0.004487</td>
<td>0.642203</td>
<td>2.781274</td>
<td>0.642203</td>
</tr>
<tr>
<td>Number of Lines S</td>
<td>-10.64165931</td>
<td>20.11232445</td>
<td>-0.52911</td>
<td>0.606377</td>
<td>-54.4626</td>
<td>33.17933</td>
<td>-54.4626</td>
</tr>
</tbody>
</table>

Table B.5. Stop-Level Regression Result for the Heuristic Public Transit System

The P&R Capacity variable has the expected sign and significance. Because the units of P&R Capacity are spaces, it is possible to interpret the coefficient on the P&R Capacity variable as the marginal impact of an additional space on boardings. Thus, an additional space at a park-and-ride lot would increase boardings at the associated stop by 1.7 riders.
Appendix C. Descriptive Statistics of the Samples

Stop-Level Analysis

<table>
<thead>
<tr>
<th>Variable</th>
<th>Obs</th>
<th>Mean</th>
<th>Std. Dev.</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>AM Boardings</td>
<td>6,321</td>
<td>10.12004</td>
<td>27.98965</td>
<td>0</td>
<td>733.8668</td>
</tr>
<tr>
<td>Number of Bus Lines</td>
<td>6,321</td>
<td>1.582503</td>
<td>1.256957</td>
<td>1</td>
<td>19</td>
</tr>
<tr>
<td>Quarter Mile Dummy</td>
<td>6,321</td>
<td>0.093023</td>
<td>0.290488</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Quarter Mile Capacity</td>
<td>6,321</td>
<td>24.07926</td>
<td>121.5429</td>
<td>0</td>
<td>1614</td>
</tr>
<tr>
<td>Population Density within a quarter mile of a stop</td>
<td>6,321</td>
<td>5839.187</td>
<td>4617.272</td>
<td>1.114756</td>
<td>35207.31</td>
</tr>
<tr>
<td>Median Household Income within a quarter mile of a stop</td>
<td>6,321</td>
<td>5299.328</td>
<td>2504.18</td>
<td>3520</td>
<td>190417</td>
</tr>
<tr>
<td>Total Number of Employed Persons within a quarter mile of a stop</td>
<td>6,321</td>
<td>1013.021</td>
<td>313.0951</td>
<td>46</td>
<td>2820</td>
</tr>
<tr>
<td>Natural logarithm of Median Household Income within a quarter mile of a stop</td>
<td>6,321</td>
<td>10.75773</td>
<td>0.521308</td>
<td>8.166216</td>
<td>12.15697</td>
</tr>
<tr>
<td>Natural logarithm of Total Number of Employed Persons within a quarter mile of a stop</td>
<td>6,321</td>
<td>6.871508</td>
<td>0.333546</td>
<td>3.628641</td>
<td>7.944492</td>
</tr>
<tr>
<td>Natural logarithm of Population Density within a quarter mile of a stop</td>
<td>6,321</td>
<td>8.289489</td>
<td>1.181536</td>
<td>0.108636</td>
<td>10.46901</td>
</tr>
<tr>
<td>Natural logarithm of the number of spaces in the nearest park-and-ride lot</td>
<td>6,321</td>
<td>4.597727</td>
<td>1.343232</td>
<td>2.197225</td>
<td>7.386471</td>
</tr>
<tr>
<td>Natural logarithm of the distance to the nearest park-and-ride lot</td>
<td>6,321</td>
<td>8.46682</td>
<td>0.999041</td>
<td>2.960813</td>
<td>10.15481</td>
</tr>
</tbody>
</table>

VTA

<table>
<thead>
<tr>
<th>Variable</th>
<th>Obs</th>
<th>Mean</th>
<th>Std. Dev.</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>AM Boardings</td>
<td>2373</td>
<td>2.210262</td>
<td>3.160282</td>
<td>0</td>
<td>51</td>
</tr>
<tr>
<td>Number of Bus Lines</td>
<td>2373</td>
<td>1.217025</td>
<td>0.527184</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>Quarter Mile Dummy</td>
<td>2373</td>
<td>0.067004</td>
<td>0.250081</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Quarter Mile Capacity</td>
<td>2373</td>
<td>22.66035</td>
<td>110.0352</td>
<td>0</td>
<td>1155</td>
</tr>
<tr>
<td>Population Density within a quarter mile of a stop</td>
<td>2373</td>
<td>7599.162</td>
<td>4254.235</td>
<td>0.784351</td>
<td>28508.55</td>
</tr>
<tr>
<td>Median Household Income within a quarter mile of a stop</td>
<td>2373</td>
<td>9220.661</td>
<td>3507.54</td>
<td>22776</td>
<td>250001</td>
</tr>
<tr>
<td>Total Number of Employed Persons within a quarter mile of a stop</td>
<td>2373</td>
<td>879.0719</td>
<td>271.038</td>
<td>228.5</td>
<td>2525.25</td>
</tr>
<tr>
<td>Natural logarithm of Median Household Income within a quarter mile of a stop</td>
<td>2373</td>
<td>11.36173</td>
<td>0.379542</td>
<td>10.03246</td>
<td>12.42922</td>
</tr>
<tr>
<td>Natural logarithm of Total Number of Employed Persons within a quarter mile of a stop</td>
<td>2373</td>
<td>6.733751</td>
<td>0.301534</td>
<td>5.431586</td>
<td>7.834095</td>
</tr>
<tr>
<td>Natural logarithm of Population Density within a quarter mile of a stop</td>
<td>2373</td>
<td>8.654522</td>
<td>1.094075</td>
<td>-0.2420</td>
<td>10.25796</td>
</tr>
<tr>
<td>Natural logarithm of the number of spaces in the nearest park-and-ride lot</td>
<td>2373</td>
<td>5.258127</td>
<td>0.887234</td>
<td>3.091043</td>
<td>7.051856</td>
</tr>
<tr>
<td>Natural logarithm of the distance to the nearest park-and-ride lot</td>
<td>2373</td>
<td>8.546036</td>
<td>0.956423</td>
<td>3.665396</td>
<td>10.9175</td>
</tr>
</tbody>
</table>
Route-Level Analysis

KCM

<table>
<thead>
<tr>
<th>Variable</th>
<th>Obs</th>
<th>Mean</th>
<th>Std. Dev.</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boardings Per Revenue Hour</td>
<td>177</td>
<td>49.01291</td>
<td>22.86366</td>
<td>4.302027</td>
<td>109.1164</td>
</tr>
<tr>
<td>MPH</td>
<td>177</td>
<td>15.77912</td>
<td>5.066547</td>
<td>6.845767</td>
<td>31.03317</td>
</tr>
<tr>
<td>Total spaces in park-and-ride lots along the route</td>
<td>177</td>
<td>468.2712</td>
<td>472.0876</td>
<td>0</td>
<td>1614</td>
</tr>
<tr>
<td>Total spaces in park-and-ride lots along the route squared</td>
<td>177</td>
<td>440885.4</td>
<td>716346.3</td>
<td>0</td>
<td>2604996</td>
</tr>
<tr>
<td>Seattle Core Dummy</td>
<td>177</td>
<td>0.649718</td>
<td>0.478412</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

VTA

<table>
<thead>
<tr>
<th>Variable</th>
<th>Obs</th>
<th>Mean</th>
<th>Std. Dev.</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boardings Per Revenue Hour</td>
<td>57</td>
<td>21.73158</td>
<td>7.100909</td>
<td>6.1</td>
<td>36.8</td>
</tr>
<tr>
<td>Total spaces in park-and-ride lots along the route</td>
<td>57</td>
<td>358.3158</td>
<td>298.3434</td>
<td>0</td>
<td>1155</td>
</tr>
<tr>
<td>Total spaces in park-and-ride lots along the route squared</td>
<td>57</td>
<td>215837.4</td>
<td>324912.2</td>
<td>0</td>
<td>1334025</td>
</tr>
<tr>
<td>Core Dummy</td>
<td>57</td>
<td>0.31579</td>
<td>0.468961</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Limited Dummy</td>
<td>57</td>
<td>0.070175</td>
<td>0.257713</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

LA

<table>
<thead>
<tr>
<th>Variable</th>
<th>Obs</th>
<th>Mean</th>
<th>Std. Dev.</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boardings Per Revenue Hour</td>
<td>30</td>
<td>48.14233</td>
<td>11.71403</td>
<td>17.8</td>
<td>71.52</td>
</tr>
<tr>
<td>Average Daily Ridership</td>
<td>30</td>
<td>11826.33</td>
<td>6285.569</td>
<td>1338</td>
<td>25365</td>
</tr>
<tr>
<td>Total spaces in park-and-ride lots along the route</td>
<td>30</td>
<td>494.5667</td>
<td>1041.938</td>
<td>0</td>
<td>4036</td>
</tr>
<tr>
<td>Total spaces in park-and-ride lots along the route squared</td>
<td>30</td>
<td>1294043</td>
<td>4106357</td>
<td>0</td>
<td>1.63E+07</td>
</tr>
<tr>
<td>Count of number of park-and-ride lots along the route</td>
<td>30</td>
<td>0.733333</td>
<td>0.980265</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>Route length in miles</td>
<td>30</td>
<td>31.10802</td>
<td>8.954876</td>
<td>12.54851</td>
<td>53.64589</td>
</tr>
</tbody>
</table>
Appendix D. Density vs. Park-and-Ride

The authors were interested in looking at the relative strength of housing density and P&R as influenced on bus transit ridership. The cleanest way to make the comparison (both in terms of comparing park-and-ride to density and in terms of comparing one system to another) is to cast everything in terms of elasticities, i.e., percentage changes in density vs. percentage changes in park-and-ride, and then compare the percentages between park-and-ride and density, and the comparison of these elasticities between the two systems. For this to be read off directly from the Poisson regression equation the independent variables need to be logarithmic transformations of the original variables. THE PROBLEM: all the park-and-ride variables are essentially dummy variables. The Quarter Mile Dummy is a dummy variable, equal to either 0 or 1. The logarithm of zero is undefined, whereas the logarithm of density is perfectly fine. So one is left with comparing an elasticity of density (1% change in density leads to a small percent change in boardings), to an absolute change in park-and-ride (there is or is not a park-and-ride lot within a quarter mile) with a percent change in boardings. That’s what the “regular” Poisson gives us.

That said, some good results can be shown.

<table>
<thead>
<tr>
<th>Poisson regression</th>
<th>Number of obs</th>
<th>=</th>
<th>6,321</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wald chi2(5)</td>
<td>=</td>
<td>564.25</td>
<td></td>
</tr>
<tr>
<td>Prob > chi2</td>
<td>=</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Log pseudolikelihood</td>
<td>=</td>
<td>-71429.7</td>
<td></td>
</tr>
<tr>
<td>Pseudo R2</td>
<td>=</td>
<td>0.2224</td>
<td></td>
</tr>
</tbody>
</table>

| | Coef. | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|------------------|----------------|-----------|-------|------|----------------------|
| ROUNDON | | | | | |
| COUNTTOTAL | 0.157815 | 0.020069 | 7.86 | 0 | 0.11848 0.19715 |
| QuarterMileDummy | 1.05605 | 0.107672 | 9.81 | 0 | 0.845018 1.267083 |
| lnPopDens | 0.477079 | 0.054324 | 8.78 | 0 | 0.370607 0.583552 |
| lnMin_B19013e1 | -0.12903 | 0.070614 | -1.83 | 0.068| -0.26763 0.009372 |
| lnMax_B23025e4 | 0.507129 | 0.161461 | 3.14 | 0.002| 0.190673 0.823586 |
| _cons | -4.36596 | 1.25215 | -3.49 | 0 | -6.82013 -1.91179 |

Table D.1. King County Poisson Regression Using QMDummy

The presence of a park-and-ride lot within a quarter mile of a stop leads to a 1.05% increase in boardings at that stop. Recall that for KCM there is an average of 5.9 stops within a quarter mile of a park-and-ride lot, while for VTA there is an average of 7.8 stops within a quarter mile of a park-and-ride lot. A 1% increase in density results in a 0.48% increase in boardings. Both results are highly statistically significant (z-values/t-stats of 9.81 and 8.78, respectively).
Table D.2. VTA Poisson Regression Using QMDummy

By comparison, for VTA the presence of a park-and-ride lot within a quarter mile of a stop leads to a 0.75% increase in boardings at that stop. A 1% increase in density results in a 0.2% increase in boardings. Both results are highly statistically significant (z-values/t-stats of 7.11 and 4.1, respectively) but less statistically significant than for KCM.

Table D.3. KCM Poisson Regression Using Distance Decay Function

The authors define a distance decay-variable of the form (Capacity/Distance^α). With a logarithmic transformation of the right-hand side of the Poisson equation, this gives two new variables, lnCapacity and lnDistance. These are defined for all observations, and have standard elasticity interpretations. For KCM, the results of incorporating the distance-decay formulation are:
For each 1% increase in spaces, the number of boardings at a stop at the average distance from a park-and-ride lot increases by 0.07%. The effect of increasing the number of spaces at a park-and-ride lot by 1% is strongly influenced by the distance of the stop from the park-and-ride lot. For each 1% increase in distance, the percent change in ridership at such a stop decreases by 0.3%. The effect of a 1% increase in population density is about a 0.53% increase in boardings at a stop within a quarter of a mile of a stop. All the results are statistically significant. The results for distance and density especially so, suggesting that these variables are the most significant in determining the result.

<table>
<thead>
<tr>
<th>Poisson regression</th>
<th>Number of obs</th>
<th>=</th>
<th>2.373</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wald chi2(6)</td>
<td>=</td>
<td>228.18</td>
<td></td>
</tr>
<tr>
<td>Prob > chi2</td>
<td>=</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Log pseudolikelihood</td>
<td>= -532.3844</td>
<td>Pseudo R2</td>
<td>= 0.102</td>
</tr>
</tbody>
</table>

Table D.4. VTA Poisson Regression Using Distance Decay Function

For each 1% increase in spaces, the number of boardings at a stop at the average distance from a park-and-ride lot increases by 0.04%. The effect of increasing the number of spaces at a park-and-ride lot by 1% is strongly influenced by the distance of the stop from the park-and-ride lot. For each 1% increase in distance, the percent change in ridership at such a stop decreases by 0.17%. The effect of a 1% increase in population density is about a 0.18% increase in boardings at a stop within a quarter of a mile of a stop. The results for distance and density are statistically significant, suggesting that these variables are the most significant in determining the result. The result for the number of spaces in a park-and-ride is of the expected sign but not statistically significant.
The variable *Boardings Per Revenue Hour* is defined as the number of people who board all the buses on a particular route over a defined period of time divided by the number of hours that these buses are operating in service on the route. Hours of service include only the periods where customers are able to board the bus and ride, not the time before and after the minutes when the bus is actually running the route in service to customers.

Both King County Transit and Santa Clara Valley Transit Authority also deploy non-bus transit (light rail). These non-bus options are not included in the data on which our regressions are based.

Poisson regression is used because the data are integer counts, for which Poisson regression is the most appropriate technique and because Poisson regression is robust to many violations of underlying assumptions, as explained in the section.

Accounting for differences in regional prices, per capita real personal income is only about 11% greater in the San Jose Metropolitan Statistical Area than in the Seattle Metropolitan Statistical Area (Bureau of Economic Analysis, Real Personal Income [RPI1] by Metropolitan Statistical Area; http://www.bea.gov/regional/).

We made the calculations in Tables 3 and 4 based on Census Urbanized Areas to make the data compatible with statistics in the APTA 2016 Fact Book.

These include varieties of dense residential and commercial development that transit can serve well, because origins and destinations of travelers are concentrated, meaning transit vehicles do not have to stop so often to pick up and discharge passengers. When this concentration of origins and destinations exists, multi-passenger transit vehicles can board and unload multiple travelers in fewer locations, thus creating efficiency in operations compared to serving passengers at low-volume bus stops.

The analysis is more complicated if one considers that some potential customers will not ride the bus if only P&R service is provided, and others will not ride the bus if boardings are supported only at neighborhood bus stops. A much more involved calculation is required if one looks at the economics from an overall societal point of view, where the costs of providing transit overall to this region need to be factored in, and includes the costs of commuters simply using their private vehicles instead of riding the bus.

Consider the example of 40 passengers commuting to a downtown employment center from a sprawling neighborhood in the suburbs. For the bus to serve these passengers close to their residential locations 30 minutes or more could be easily consumed, in addition to the 30 minutes it required to get all the way downtown from the last bus stop in this example suburb. So the boardings per service hour would be 40 in this scenario. On the other hand, if these 40 passengers made their way to a single pick up point at a park-and-ride facility, the time assigned to getting these passengers aboard the bus in the morning would be reduced to say 5 minutes, and
then the bus could be underway on the 30 minutes to reach downtown. This means that the boardings per service hour would drop down to 40 passengers divided by 35 minutes, or 69 boardings per service hour, a gain of 71 percent.

19 We chose a quarter-mile as the standard distance that people are willing to walk to get the bus. Many transit centers have stops located at the transit center. However, with modern GPS (geographic positioning system) technology, stops are typically identified as distinct from the transit centers they are at. Depending on the layout of the transit center, stops located at the transit center may show up as a few hundred feet away.

20 There are several stops both for KCM and VTA where the count of boardings is zero. This is an important technical point when running Poisson regressions.

21 See Wooldridge (2013, 604-609) and Woodridge (2010, 723-776)

25 This is proved by noting that the actually achieved 2,288 hours X 44.5 boardings per hour is equal to (2,288 hours + 678 hours) X (44.5 boardings per hour – 10.2 boardings per hour). In other words, a service hour consumption 678 hours above the actual when multiplied by a boardings per hour number that is 10.2 boarding per hour lower yields the same actual boardings number that is the product of the actual 2,288 hours and the actual boardings per hour of 44.5.

26 In Excel spreadsheet format at http://bettertransport.info/P&R_parking_fee_calculator.xls.

27 http://metro.kingcounty.gov/am/

28 http://vta.org

29 http://Metro.net

30 http://commtrans.org

32 http://piercetransit.org

34 We assume that riders on the orange route commute toward one of the employment centers.