Using GIS to Assess and Route Neighborhood Greenways

Presented by **Diana Smith, GISP** Wednesday, June 29th, 2016 ESRI User Conference, San Diego

Diana Smith, GISP

- GIS Technical Manager at KTU+A
- Emphasis on GIS Analysis and Modeling in support of Active Transportation Planning & Community Planning
- Presentation covers work conducted as part of the Bicycle & Pedestrian Master Planning process in several cities around Southern California

Why Active Transportation?

- Environmental Benefits
- Health Benefits
- Economic Benefits

Vehicles produce approximately 0.59 lbs of CO2/passenger/mi traveled of carbon emissions. Bicycling only produces 0.05 lbs of CO2/passenger/mi traveled (EPA, 2014).

Calories you can burn during a 30min bike ride (CDC, 2015).

13 lbs average weight loss in first year biking to work (CDC, 2015).

The Impact of Bicycle Facilities

 According to the Pedestrian-Bicycle Information Center, 2014.

Philadelphia 2009

Salt Lake City 2010-2011

Cambridge 2002-2006

New York City 2010-2011

Minneapolis 2010

What Makes a NG?

"Neighborhood Greenways are residential streets with low volumes of auto traffic and low speeds where bicycles and pedestrians are given priority."

-City of Portland, PBOT

- Improve safety
- Help people cross busy streets
- Discourage cars from using neighborhood streets to avoid main streets
- Protect the residential character of our neighborhoods
- Keep speeds low
- Get people to where they want to go like parks, schools, shops and restaurants

-City of Seattle, DOT

Identifying Potential NGs Using GIS

Key Attributes

- Length
- Speed
- Functional Class
- Major Crossings

Bonus Attributes

- ADT (1500-2000)
- Number of Lanes
- Slope
- Tree Canopy/Shade
- Collisions
- Scenic Quality
- Unpleasant Visual/ Olfactory Land Uses

Typical Routing Analysis

> Hand off to Active Transportation Planner for Analysis and Selection of Recommended Routes

Enhanced Routing Analysis

Weighted Attractor Density

Attributes & Sources

Typical Attributes:

- · Length (Shape)
- Speed (OpenStreetMap)

- Functional Class (OpenStreetMap)
- Major Crossings (Geoprocessing)

Augmented Network With:

(TIMS Berkeley) Spatial Join between Collisions and Road Segments > Classified Segments in three Tiers > Incorporated using Hierarchy Attribute

> of Lanes (OSM)

ШШ

Extracted Lane
Data from
OpenStreetMap
and
incorporated
into Network.

Turns (Generated Global Turns)

Modeled Global
Turns and Heavily
Weighted both Right
and Left turns
adding significant
cost to the
alternative.

Previous Results

Enhanced Results!

Conclusions

- Previous results presented Transportation Planners with too many options causing 'planning fatigue'
- NG Routes should augment Bicycle Plans not dominate these highly refined routes are the ideal compliment to proposed Class I-Ills
- Heavily weighted global turns replaced need for calculation of out of direction travel
- Future iterations to include Tree Canopy/Shade, Land Use Adjacency, and more!

Questions???