

Raster Classification

· What is it?

 Classifying imagery into different land use/ land cover classes based on the pixel values of imagery bands

Why do it?

- Allows for analysis of land use/land cover change, identification of features, suitability analysis

Raster Classification

- What we will be talking about today
 - Workflow in ArcMap and ArcGIS Pro
 - Decisions that need to be made prior classification
 - The different algorithms available in ArcGIS Desktop
 - Accuracy assessment

Workflow in ArcMap

- 1. Simplify data with Segment Mean Shift (Optional)
- 2. Train Classifiers
- 3. Run Classifiers
- 4. Analyze Samples against Accuracy Assessment points

Workflow in ArcGIS Pro

- Create Training Samples and Generate Classification Schema if desired
- Image Classification Wizard
 - Segment Mean Shift
 - Train Classifiers
 - Classify your Data
 - Merge Classes
- Do Accuracy Assessment

Unsupervised vs supervised

Leave the kids home alone....

Unsupervised

- Classification is based on the software analysis of an image without the user providing sample classes
- Users decide on the number of classes and number of iterations used for the classification.
- Easier, but less accurate

Supervised vs unsupervised

....or with a Babysitter?

Supervised

- Classification is based on user provided training samples that are representative of the different land use/land cover classes
- Training samples are selected based on user's knowledge of the area represented by the image.
- Users choose training sample, algorithm (Maximum Likelihood, Random Trees, Vector Support Machine)
- More intensive, but better accuracy

ID	Class Name	Value	Color	Count
1	Yellow	1		72
2	Pink	13		11
3	White	16		48
4	Orange	30		18
5	Purple	36		10
6	Grass	40		108

Pixel based vs Object based

- Pixel based classification
 - Every pixel is classified separately

Object based classification

 Pixels are grouped into objects (Segmentation Mean Shift) and then classified

Determine Classes

Keepin' it Classy

- What classes make sense for the analysis?
- Use a Preexisting Scheme or create a custom?
 - Anderson Land Use/ Land Cover Schema
- Do classes need to be split for machine training?

Level I	Level II
1 Urban or Built-up Land	11 Residential
	12 Commercial and Services
	13 Industrial
	14 Transportation, Communications, Utilities
	15 Industrial and Commercial Complexes
	16 Mixed Urban or Built-up Land
	17 Other Urban or Built-up Land
2 Agricultural Land	21 Cropland and Pasture
	22 Orchards, Groves, Vineyards, Nurseries, and Ornamental Horticultureal Areas
	23 Confined Feeding Operations
	24 Other Agricultural Land
3 Rangeland	31 Herbacious Rangeland
	32 Shrub and Brush Rangeleand
	33 Mixed Rangeland

How Many Classes Do You See?

I spy with my little eye.....

- Asphalt
- Buildings
- Planes
- Grass
- Trees

How to Teach an Algorithm to 'See'

What Makes a Tree a Tree?

- How do humans identify classes in imagery?
 - Color
 - Size
 - Shape
 - Texture
- How do we teach an algorithm to identify classes?
 - Look at image as a machine does
 - Pixel by Pixel
 - Band by Band
 - Reflectance

Translate our Classes to a Computer's 01000101 01010011 01010010 01001001

- Asphalt
- Buildings
- Planes
- Grass
- Trees

Translate our Classes to a Computer's

- Asphalt
- Buildings
 - Grey Roofs
 - White Roofs
- Planes
- Grass
- Trees
- Shadows

How to train your data

AKA How to think like a machine

- General guidelines:
 - 20-30 samples per class
 - As evenly distributed across the image as possible
 - Train, classify, adjust classes, repeat until classification is satisfactory, try different algorithms

The Basic Equation

$$\frac{\Gamma_{1} + A}{\Gamma_{1} + A} \text{ init } \frac{\Gamma_{1} + A, \Sigma_{1} - \Gamma_{2}, A + \Sigma_{2}}{\Gamma_{1}, \Gamma_{2} + \Sigma_{1}, \Sigma_{2}} \text{ cut}$$

$$\frac{\Gamma + \Sigma}{\Gamma_{1} ! A + \Sigma} \text{ weak}_{L} \frac{\Gamma + \Sigma}{\Gamma + ?A, \Sigma} \text{ weak}_{R} \frac{\Gamma_{1} ! A, 1A + \Sigma}{\Gamma_{1} ! A + \Sigma} \text{ contr}_{L} \frac{\Gamma + ?A, ?A, \Sigma}{\Gamma + ?A, \Sigma} \text{ contr}_{R}$$

$$\frac{\Gamma_{1}, A, B + \Sigma}{\Gamma_{1}, A \otimes B + \Sigma} \otimes_{L} \frac{\Gamma_{1} + A, \Sigma_{1} - \Gamma_{2} + B, \Sigma_{2}}{\Gamma_{1}, \Gamma_{2} + A \otimes B, \Sigma_{1}, \Sigma_{2}} \otimes_{R} \frac{\Gamma + \Sigma}{\Gamma_{1}, 1 + \Sigma} \mathbf{1}_{L} \frac{\Gamma + \mathbf{1}}{\Gamma + \mathbf{1}} \mathbf{1}_{R}$$

$$\frac{\Gamma_{1}, A + \Sigma}{\Gamma_{1}, A \otimes B + \Sigma} \otimes_{L1} \frac{\Gamma_{1}, B + \Sigma}{\Gamma_{1}, A \otimes B + \Sigma} \otimes_{L2} \frac{\Gamma + A, \Sigma}{\Gamma + A \otimes B, \Sigma} \otimes_{R} \frac{\Gamma + B, \Sigma}{\Gamma + A \otimes B, \Sigma} \otimes_{R} \frac{\Gamma + \Gamma}{\Gamma + \Gamma, \Sigma} \xrightarrow{\Gamma_{R}}$$

$$\frac{\Gamma_{1}, A + \Sigma_{1} - \Gamma_{1}, B + \Sigma_{2}}{\Gamma_{1}, \Gamma_{2}, A \otimes B - \Sigma_{1}, \Sigma_{2}} \otimes_{L} \frac{\Gamma + A, B, \Sigma}{\Gamma + A \otimes B, \Sigma} \otimes_{R} \frac{\Gamma + B, \Sigma}{\Gamma + A \otimes B, \Sigma} \xrightarrow{\Gamma_{R}} \frac{\Gamma + \Sigma}{\Gamma + \Gamma, \Sigma} \xrightarrow{\Gamma_{R}}$$

$$\frac{\Gamma_{1}, A + \Sigma}{\Gamma_{1}, A \otimes B + \Sigma} \oplus_{L} \frac{\Gamma + A, \Sigma}{\Gamma + A \otimes B, \Sigma} \oplus_{R1} \frac{\Gamma + B, \Sigma}{\Gamma + A \otimes B, \Sigma} \oplus_{R2} \frac{\Gamma_{1}, A + \Sigma}{\Gamma, A + \Sigma} \circ_{L} \frac{\Gamma_{1}, A + \Sigma}{\Gamma, A + \Sigma} \circ_$$

ISO Cluster

I SO Love Clusters

- Unsupervised
 - Iterative Self Organizing
 - Initially, means are placed on a 45 degree line the multiband space and then each pixel is assigned to the closest mean.
 - New means are calculated.
 - The next iteration then assigns the pixels to the closest new mean.
- User selects number of classes and number of iterations
- Easy
- Not as accurate

Maximum Likelihood

Supervised

- Uses training sample variance and co-variance to create a multiband class signature. Assigns pixels to class based on the maximum likelihood of that they belong to that class
- Assumes normal distribution of training data in multiband space

Support Vector

- Supervised
 - Similar to Maximum Likelihood
 - Places pixels in multiband space
 - Instead of determining the likelihood of a pixel belonging a class, pixels are assigned to classes so that the gaps between classes are as large as possible

Random Trees

An Entmoot?

- Supervised
 - Creates decision trees for random sub-samples of the training data
 - Each pixel is then classified by each tree
 - The class that is most often selected by the trees is assigned to the pixel

Accuracy Assessment

- Done to provide an idea of how well the Reclassification worked
- "Real Values" (Ground Truth/ Testing data) can be collected in the field or visually from Satellite Images
- 3 Main tools
 - Create Accuracy Assessment Points
 - Update Points
 - Create Confusion Matrix

				90	
г.			L	ı_	
	-	ш	г	n	
	·	a i	L		

	Ti .	1	Table 1	F.	i	T.
	Asphalt	Concrete	Grass	Tree	Building	Total
Asphalt	2385	4	0	1	4	2394
Concrete	0	332	0	0	1	333
Grass	0	1	908	8	0	917
Tree	0	0	0	1084	9	1093
Building	12	0	0	6	2053	2071
Total	2397	337	908	1099	2067	6808

Confusion Matrix

Will you take the Red Cell or the Blue Cell?

- Generates a Kappa Index of Agreement between classified raster and ground truth data
- Index is based on how well the Classified Raster reflects the Ground Truth Points
- Kappa Index is expressed as a value between 0 and 1
 - The closer to 1 the value is, the more accurate the reclassification was
- This tool is best used when comparing different Algorithms or Methods
 - This is because the Kappa Index assesses each raster independently

GARBAGE IN, GARBAGE OUT

So, Why do We Do This?

THIS...

Becomes This...

