

Agenda

- ArcGIS Topology defined
- Validating a topology
- Editing a topology
- Geoprocessing tools
- Ephemeral topologies
- Data model design and performance
- Topology at 10.1 and 10.3

Various cheesy demos

ArcGIS Topology

• Fundamentally, topology is used to manage how a set of simple feature classes share geometry

What Happens to the Features?

Nothing

- No change to storage of features
- No change to behavior of features

• So, what changes?

What Changes with a Topology?

- Topology tracks edits you make to the features
- Flags areas that have been modified
- Validate Topology command analyzes the edited areas and evaluates the rules
- If a rule is violated, a topology error feature is created
- You correct the errors or mark them as exceptions to the rule (or you may ignore the errors altogether)

Topology Rules

- Define integrity rules and constraints for the feature classes
- Can include point, line and polygon features
- Evaluated when the topology is validated
- Violations are expressed as topology errors
- 31 different rule types
 - 14 ArcGIS Topology rules can emulate coverage model
 - More may follow
- It is not possible to create custom rules

Rules to Model Coverage Topology

Arc rules

- Line must not have dangles
- Line must not intersect or touch interior
- Line must not have pseudos
- Line must be single part
- Line must not self-intersect
- Arc-Node rules
 - Line endpoint must be covered by point
 - Point must be covered by line endpoint
- Polygon rules
 - Polygon must not have gaps
 - Polygon must not have overlaps
 - Polygon must be covered by line
 - Line must be covered by boundary of polygon

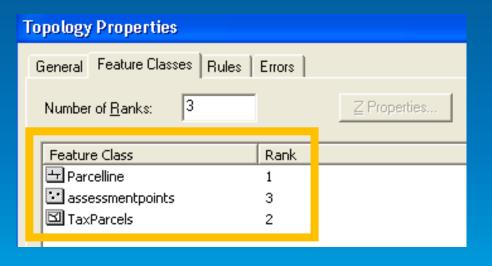
- Region rules
 - Polygon must be covered by boundary of polygon
- Route rules
 - Line must be covered by feature class of line
- Label Rules
 - Point must be properly inside polygon

Dirty Areas

- Define locations where the spatial integrity of the topology is unknown
 - I.e., validate has not been run following edits
 - Used to optimize the validate process
- May contain existing or undiscovered topology errors
 - A clean area does not contain any undiscovered errors
- Stored in the geodatabase
- Created as a byproduct of editing features
- Created when shape or subtype changes

Cluster Tolerances

- Cluster tolerance is a property of the topology
 - Cannot be set on a per feature class basis
- Minimum cluster tolerance is the default
- Support separate cluster tolerances for XY and Z


Cluster Tolerances

- NOT an upper bound for point movement
- Instead, a lower bound for line to line and point to line separation

- Used during validation to ensure:
 - No two points are closer than the cluster tolerance
 - No point is closer than the cluster tolerance to a line of which it is not an endpoint
 - No two lines intersect except at their endpoints

Topology Ranks

- Each feature class has a rank
- Ranks are used to establish a priority ordering
- Vertex with the highest rank determines the cluster location
- Nothing is sacred
- Ranks supported for
 - XY
 - Z

Validation

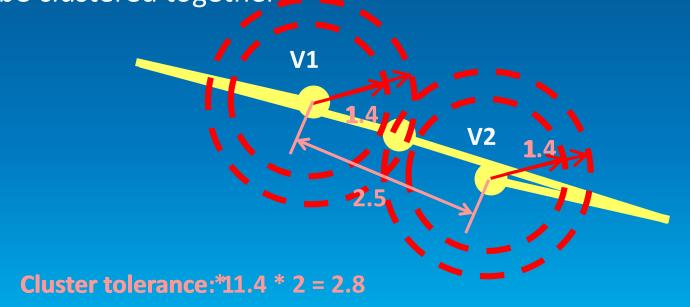
- Integrates the geometries:
 - Segmentize the geometries
 - Cracking and clustering
 (this may update the geometries of the features)
- Evaluates topology rules
- Generates topology errors
- Deletes errors if rules are no longer violated
- Removes validated portions of dirty area

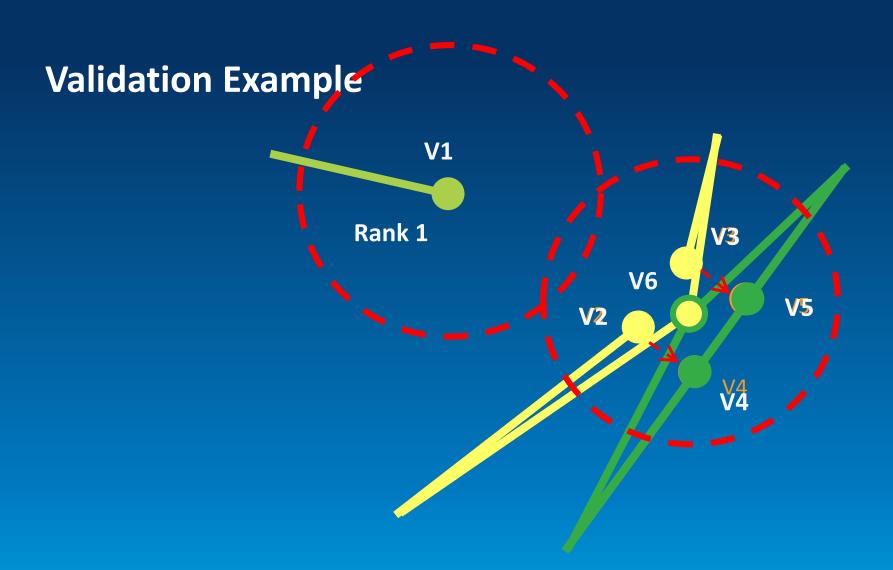
Cracking and Clustering

- Can go through a number of iterations
 - Maximum of six iterations

- In each iteration, a point may move no further than the cluster tolerance times the square root of two
 - Maximum movement is 6 * tolerance * sqrt(2)
 - The probability of this occurring is completely negligible
 - Point movement should be considered a statistical parameter, much like the standard deviation for a normal distribution

Validation

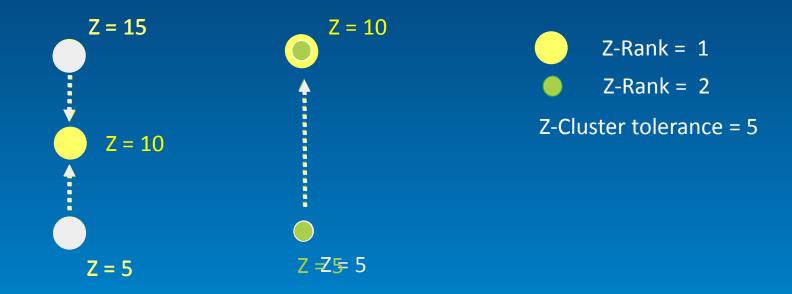

- Any part of the dirty area can be validated
- Not required to validate before saving changes or reconciling
- Users can define their own workflow
 - Validate after every edit operation
 - Validate once prior to saving
 - Validate once a week



Validation

 A vertex may move up to the square root of 2 (~1.4) times the cluster tolerance during each iteration of cracking and clustering

- Thus, two vertices that are separated by ~2.8 times the cluster tolerance may be clustered together____

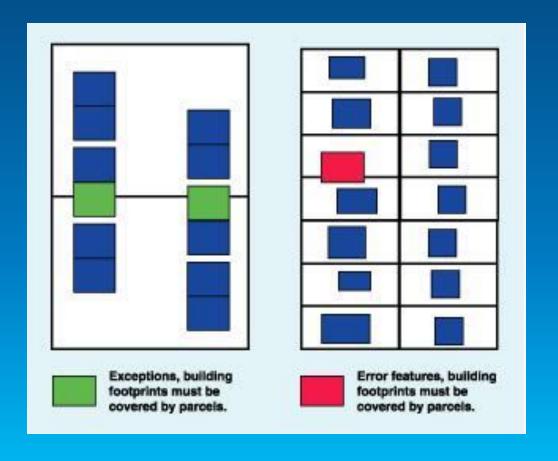

The entire with the stand one line with specified priorities with higher rank)

Z-Aware Data

Two different models based on Z-cluster tolerance

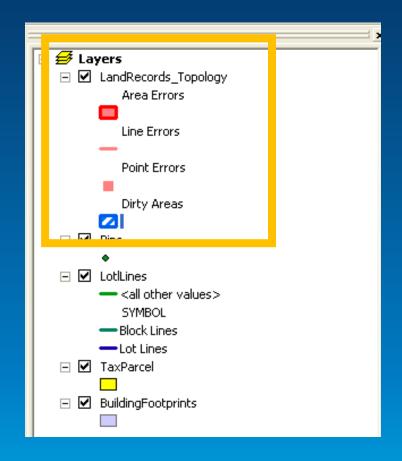
- "Terrain" model
 - All coincident vertices share a single elevation
 - Use a large Z-cluster tolerance
- "Building" model
 - Coincident vertices may or may not have common elevation value
 - Use a smaller Z-cluster tolerance

Clustering Z-Aware Features



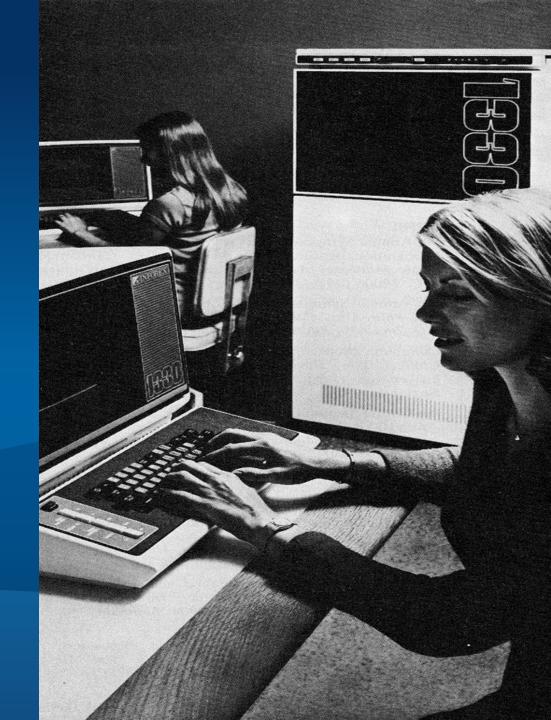
Bevallage the attended the setting of the setting o

(note: sqrt(2) factor does not apply to z clustering process)


Topology Errors

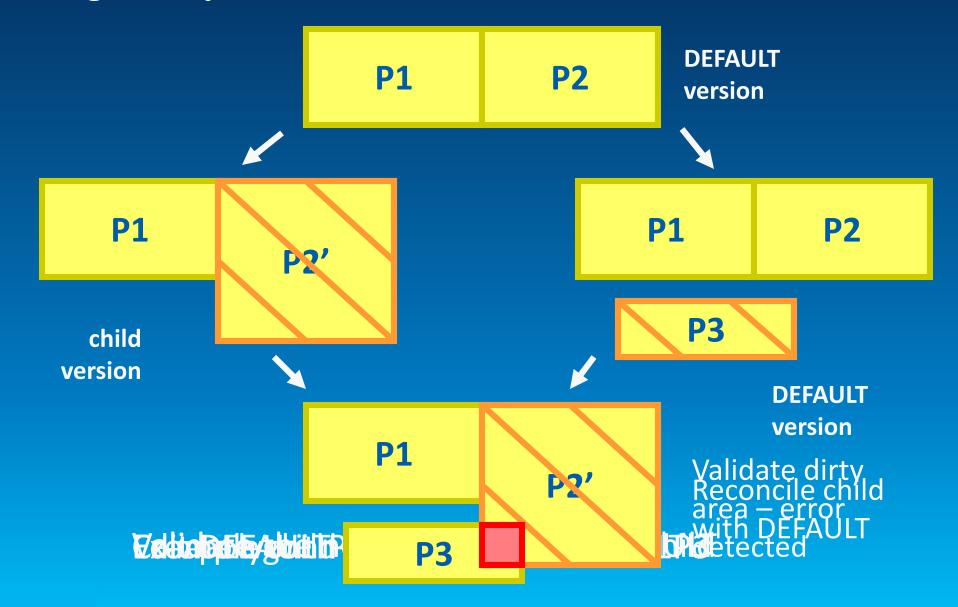
- Created during validate when a topology rule is violated
- Contain information necessary to:
 - Understand the rule violation
 - Draw the rule violation
- Have geometry based on violated rule type

Topology Errors


- Visible through the topology layer
- Cannot be deleted by the user
- User has three options:
 - Leave the error
 - Fix the error
 - Elevate the error to exception status
 - E.g., rule applies everywhere except 'here'

Hopefully, another decent demo

Colin Zwicker



Versioning

- Topology is fully supported in the versioned environment
 - Multiple simultaneous editors of same feature
- No restriction on reconciling and posting only fully validated topologies
 - Dirty areas and errors correctly handled
- Reconcile will result in the areas containing new or updated features becoming dirty
 - Subsequent validation is fast as integrate (cracking and clustering) typically does not need to update the feature geometries

Versioning Example

Versioning Workflow

- Workflow is critical with versioning
- Recommended workflow:
 - 1.Load all the data
 - 2. Define the topology
 - 3. Validate the entire topology
 - 4. Finally, register the topology as versioned
- Bonus question: Why?

Geoprocessing Tools

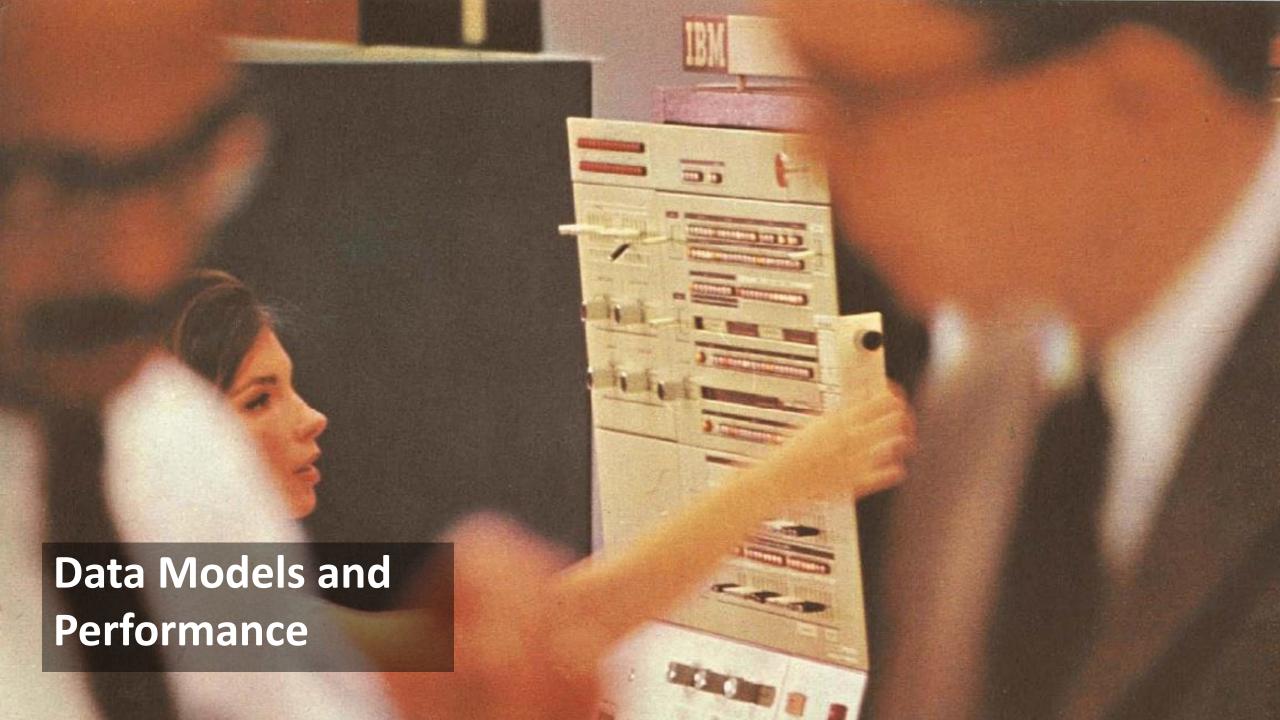
- There are a number of GP tools available that can be used to:
 - Manage topologies
 - Validate topologies
 - Perform bulk topological updates
 - Output new feature classes based upon topological operations
- Like all Geoprocessing tools, these are scriptable in Python, and may be used with the GP Service

Managing Topologies

- There are many GP tools that can be used to manage topologies:
 - Add Feature Class
 - Add Rule
 - Create
 - Remove Feature Class
 - Remove Rule
 - Set Cluster Tolerance
 - Validate

Geoprocessing Tools

- There is a variation of the Validate operation called "Integrate", but only applies the cracking and clustering tolerance to a collection of feature classes
 - It updates the geometry of every feature within each feature class as a result of running all of the features through the Topology Engine
- At 10.0, there are GP tools to perform bulk editing
 - These are basically the ARC/INFO capabilities found within ArcEdit
 - Some of the more interesting are "Extend Line" that extends undershoots, and "Trim Line" that removes overshoots (dangles)



Geoprocessing Tools

- These tools output new feature classes based upon basic topological operations:
 - Feature To Line
 - Generates a planar output of the lines of a collection of input polygons and/or lines (e.g., generating the Arcs)
 - Feature To Polygon
 - Generates a planar output of the polygons of a collection of input polygons and/or lines with a single point feature class providing the attributes (like ARC/INFO CLEAN)
 - Polygon To Line
 - Generates the planar output of lines from a single polygon feature class assigning the left and right of the polygon to the lines (like the Arcs of a Coverage)

Ephemeral Topologies

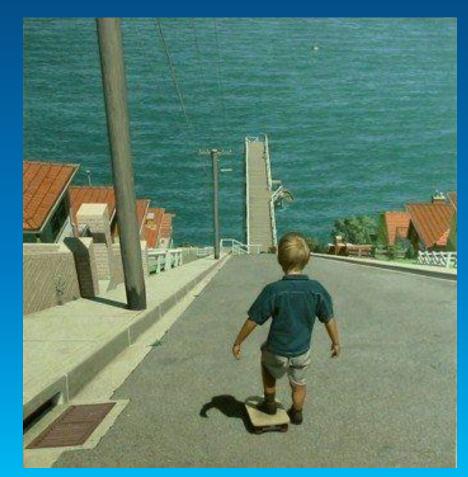
- Topologies that are short lived and intended to support QA/QC processes on data prior to incorporation into another controller dataset
 - E.g., geometric networks, network datasets, or utility networks (at 10.6/2.1)
- Once data is considered good, the topology is deleted and the participant features are then incorporated into another dataset

Good Ideas

- Choose your spatial domain carefully
 - Resolution should be much smaller than data capture accuracy
- Use the default cluster tolerance
- Couple with network dataset for network routing
- Model only those relationships that are important
- Minimize class count and utilize subtypes
 - Cursors are expensive
 - Pro 2.1 will introduce Subtype Layers that will aid this process

Good Ideas

- Avoid classes containing small number of large features
 - Nation or state polygon
- Consider periodic GP tools for QA/QC
 - Avoidance of large polygons (e.g., nation or state)
- Always prototype the data model


Bad Ideas

Using a topology with a very large cluster tolerance to clean up bad

data

- Instead, use GP tools (e.g., Integrate)

- Coincident geometrically identical features
 - Stack of polygons representing a multi-story condo with no-overlap rule
- Extremely small features
 - Approximately cluster tolerance size

Topology at 10.1

- Support for schema changes to versioned topologies without having to un-version the feature dataset
 - Add a feature class to or remove one from the topology
 - Add or remove a topology rule
 - Change tolerance or rank
- New GP tool (Export Topology Errors) that allows you to export topology errors as feature classes
- Improved editing tools for maintaining topological data
 - According to Colin, some users are stoked...

Topology today

- Topology was not supported in the early releases of ArcGIS Pro
 - It is supported in ArcGIS Desktop 8.3

Topology is supported in ArcGIS Pro 1.3

Summary

- Very flexible
 - You pick the topology rules
 - You decide how to handle errors
 - You control the workflow
 - You can extend the functionality
- Easy to use
 - Wizard for defining
 - Topological editing tools
 - Error correction tools

Summary

- High performance
 - User controlled validation process
 - Incremental validation
- Scalable
 - Nationwide datasets
 - Versioned RDBMS
- Complete geodatabase integration
 - Versioning
 - Copy/paste, XML import/export
 - Replication, distributed geodatabases
 - ArcGIS Server

Understanding our world.