UC

Working with Scientific Data in ArcGIS Platform

Sudhir Raj Shrestha

sshrestha@esri.com

Hong Xu

hxu@esri.com

Esri User Conference, San Diego, CA. July 11, 2017

What we will cover today

Scientific Multidimensional data

Using Scientific Data in ArcGIS

- Ingesting and Managing
- Visualizing and Analyzing
- Disseminating and Consuming
- ArcGIS is an Open Platform
- Application(s) and Use case

Diverse Scientific Multidimensional Data

Oceanographic

- Salinity
- Sea Temperature
- Ocean current

Meteorological

- Temperature
- Water Vapor/Precipitation
- Wind speed/direction

Terrestrial

- Soil moisture
- NDVI
- Land cover

Challenges

variety of formats
volume & velocity
redundancy

portability scalability reproducibility integration standards accessibility

Multidimensional Mosaic Dataset

mosaic

HDF

GRIB

netCDF

d-aware rasters

table

multi-resolution, multivariate, multidimensional reduce storage redundancy & pixel resampling defines information products

spatially-indexed catalog

on-demand processing

raster pixels

Representing multivariate collection of multidimensional rasters in ArcGIS

ArcGIS Multidimensional Data Model

Multidimensional Mosaic Dataset in Geodatabase

- Ingest variables from netCDF, HDF & GRIB using raster types
 - Aggregate multiple variables, multiple files
- Support on-the-fly processing

Raster Types for Multidimensional data

data on disk

raster type

mosaic dataset

netCDF

HDF

GRIB

d-aware rasters

crawls disk

identifies rasters

extracts metadata

attaches processing

stores no pixels

references rasters

stores processing & metadata

Format-agnostic direct ingestion of rasters into a mosaic dataset

Creating a Multidimensional Mosaic Dataset

General Processing

Variables

Using Geoprocessing Tools

- Create a empty mosaic dataset
- Add select variables

Slicing your data

- Slicing
 - By variable, using variable selector

- By dimension using Select by Dimension Geoprocessing tool
- Visualizing
 - Time slider
 - Range slider
 - Vector field renderer

Raster Analysis

Geoprocessing Tools (GP)

- Tons of GP tools
- GP tools, Python scripting and ModelBuilder -> perfect automation of data management and analysis.

Dynamic On-the-Fly Processing using Raster Functions

- Manage and analyze large collection of rasters on the fly as the data is accessed and viewed
- Quick and save time by not required to write the processed product to disk
- Functions can be applied to various rasters (images) including:
 - Raster dataset layers
 - Mosaic datasets
 - Image service layers

Raster Function: Transforming Raster Data

Learn more at: <u>github.com/Esri/raster-functions</u>

Choose from dozens of built-in functions or implement your own algorithm using Python

Chaining Raster Functions

Copyright © Esri. All rights reserved.

Raster Function Templates

A portable & reusable chain of raster functions

Raster Function Template and MD: GroupName and Tag

Mosaic Data must contain:

- Field stored with variable names (tag)
- Field defines groups(GroupName)

	Raster	Tag	StdTime	GroupName
		Temperature	t1	1
		mean	t1	1
		Temperature	t2	2
_		mean	t2	2
		Temperature	t3	3
		mean	t3	3
		Temperature	t4	4
		mean	t4	4

Applying a Raster Function Template to Mosaic Dataset

Apply RFT to Mosaic Dataset:

Process each group

Disseminating

Serving Multidimensional Data

Multidimensional Image Services

Serve data (not a picture)

- LERC compression to maintain data quality
- Perform analysis and analysis through the web

Multiple clients:

- Desktop clients
- Web Map Viewers
- JavaScript etc.
- WMS/WCS
 - Time=t1&Elevation=z1
 - DIM_Time=t1&DIM_depth

Sharing data & information products

Mosaic Dataset > Share As Web Layer

Enable access to a dynamic representation of your information product as an image service

Consuming your services

- In any ArcGIS application or any WMS client
- •In a web map
 - Identify web services driven by maps or datasets
 - Bring service layers into a web map
- In a map-based application

- Configurable apps
- Story Maps
- Web AppBuilder
- Custom web apps using ArcGIS API for JavaScript

ArcGIS is an Open Platform

Scientific Data Interoperability in ArcGIS

- Ingesting many scientific data formats
- Supporting common scripting language in scientific computing
- Support OGC specifications in serving scientific data through web

Scientific Data Formats

- Support multidimensional raster formats
 - NetCDF
 - GRIB 1 and GRIB 2
 - HDF 4 and HDF 5

- Use Open Source GDAL
- Extendable by developing custom format driver

Scientific Data Formats - HDF

- HDF4
 - Support HDFEOS4
- HDF5
 - Support HDFEOS5 (for HDF5)
 - Support some custom CF style HDF5
 - SMAP
 - Will provide generic support for CF style HDF5

Scientific Computing

- Perform scientific computing using Geoprocessing tool
 - Extendable by creating a custom Geoprocessing tool
- Performing scientific computing using Raster Function
 - Extendable by developing a custom python raster function
- Support Python Scripting
 - NumPy
 - SciPy

Serving Scientific Data

- Serve gridded raster data as image service with OGC capabilities
 - WCS
 - WMS
 - Dimensional query of Time and Depth

Few Take Away

- 1. Mosaic Dataset is a robust data model that allows you to manage your large collections of scientific multidimensional data
- 2. Raster function(s) can help with your efficient on the fly computing that saves Time and Resources
- 3. Mosaic Dataset is a quick way to build the live web service
- 4. Make your scientific data and research output usable with repeatable workflow to your larger community
- 5. ArcGIS is an open platform that provides opportunity to expand the capabilities to collaborate and support your work

Want to learn more....please join these sessions:

Scientific and Multidimensional Raster Support in ArcGIS (SDCC Room 17A) When: July 12, 2017 8:00-10:00 AM.

Raster Analytics-Envision Center Presentation (SDCC: Envision Center 1) When: July 12, 2017 2:00-3.30 PM

Image Management using Mosaic Datasets and Image Services (Room 3). When: July 13, 2017 8:30-9:45 AM

Session 2084: Weather, Forecasting, and Radar Site-selection (Room 29 A/B) When: July 13, 2017 10:00AM-12PM.

Please Take Our Survey on the Esri Events App!

Download the Esri Events app and find your event

Select the session you attended

Scroll down to find the survey

Complete Answers and Select "Submit"

