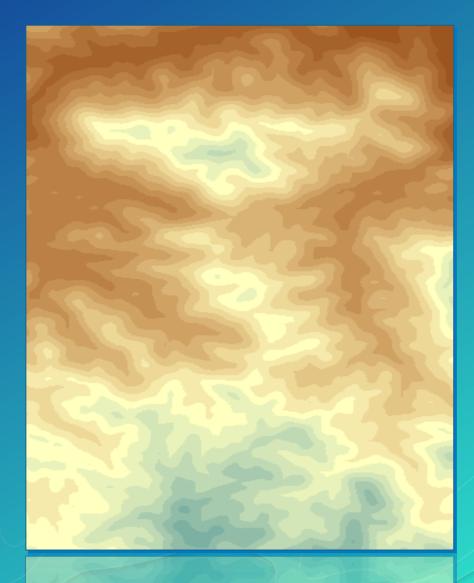


Creating Surfaces

Steve Kopp Steve Lynch


Overview

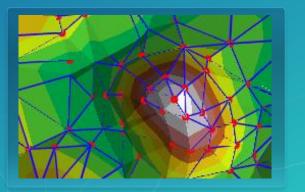
 Learn the types of surfaces and the data structures used to store them

- Emphasis on surface interpolation
 - Learn the interpolation workflow
 - Understand how interpolators work
 - Understand how to choose an appropriate interpolation technique and its parameters

Types of Surfaces

- Elevation
- Soil chemistry
- Water quality
- Population
- Income
- Disease occurrence

What kind of surfaces do you create?


- What is the source data?
 - Points, lines, polygons, raster
 - Do you know the input data quality?
- What is the phenomenon?
 - Measurements, *counts*, something else
- Anything special or odd about it?
 - Discontinuous
 - Highs and lows sampled or not

What do you want/expect for a result?
Raster, TIN, contour lines or polygons, estimates at specific points, estimate of surface quality

Storing surfaces in ArcGIS

- Raster
- TIN / Terrain
- Points
 - LiDAR, LAS
- Isolines / Contours
- Geostatistical Layer

78	72	69	71	58	49
74	67	56	49	46	50
69	53	44	37	38	48
64	58	55	22	31	24
68	61	47	21		
74	53	34			

TIN and Terrain

Maintain accuracy of measured locations

Discontinuities are handled with breaklines

- Hard breaklines (cliff, fault)
- Soft breaklines (road, stream)

Where do I find these capabilities?

- Spatial Analyst raster, contour
- 3D Analyst raster, contour, TIN, terrain
- Geostatistical Analyst raster, contour line, filled contour polygon, point, geostatistical layer

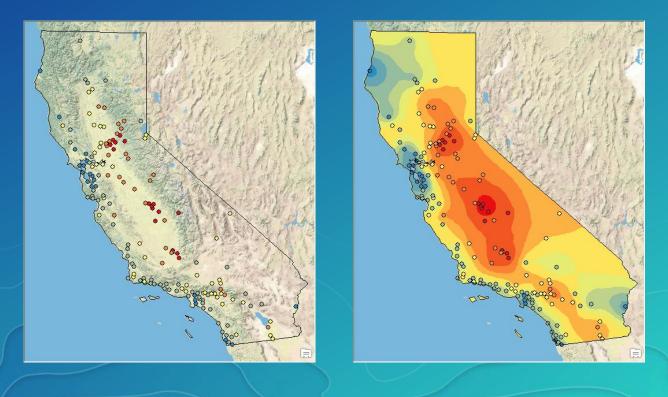
ArcGIS Online and Enterprise Image Server – raster, filled contour polygons

2 common types of surfaces

Density surfaces = counts of things over an area

Interpolated surfaces of measured quantities
 This session is about interpolation

Density


- Density surfaces are maps of magnitude per unit area
- Count occurrences of a phenomenon within an area and distribute it through the area.
- Simple Density and Kernel Density
- Use points or lines as input.
 - Population per Km2
 - Road density per Mi2

Interpolation

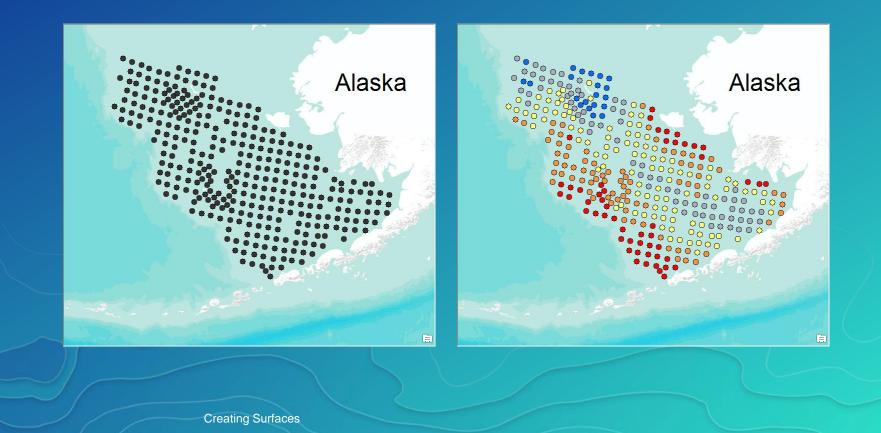
 Interpolation is the process of transforming measurements of a continuous phenomenon into a continuous surface representation

Estimating new values at unsampled locations

Types of input for Interpolation

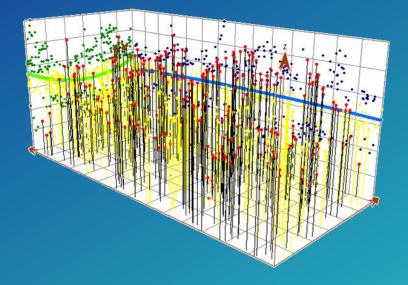
- Points
 - Continuous values
 - LAS
- Polylines
 - Contours
- Polygon
 - Centriod
 - Areal Interpolation
 - Dasymetric mapping

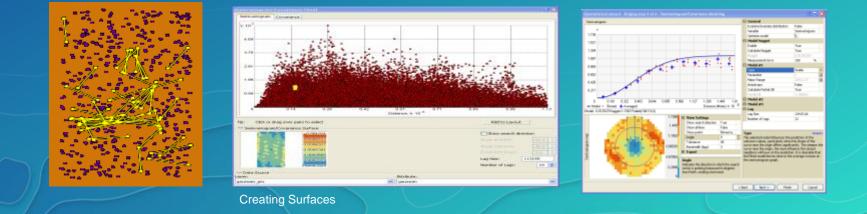
Raster

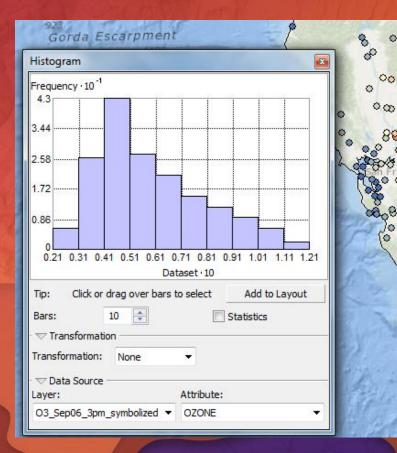

- Fill in missing values
- Change resolution through Resampling or Interpolation
- Modify surface with supplemental data

Interpolation Process

- 1) Understand your data
- 2) Experiment with techniques and parameters
- 3) Create surfaces
- 4) Evaluate your surfaces
- 5) Repeat...


Exploratory Spatial Data Analysis


- Where is the data located?
- What are the values of the data points?
- How does the location of a point relate to its value?



Explore your Data

- Outliers
- Trends
- Spatial Dependency
- Distribution
 - Statistical distribution of values
 - Spatial distribution of points
- Stationarity

Constant of

Two parts of all interpolators

1) Neighborhood definition – where do I find known points to estimate a new value

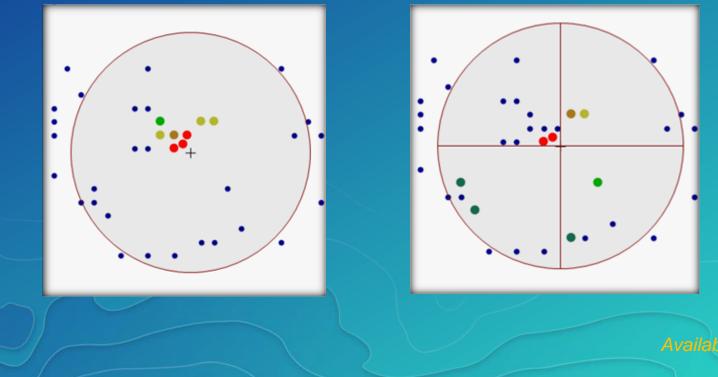
2) Estimation function – from those points, how do l calculate a new value

Creating Surfaces

Searching neighborhood

Variable number of points

- Specify a maximum search distance and minimum number of points, a smaller number of points may be used.
- Can result in NoData cells


Fixed number of points

 Specify a minimum number of points, and the search distance is increased until that number of points is found.

> **Tobler's first law of geography applies** "Everything is related to everything else, but near things are more related than distant things."

Searching Neighborhoods with Multiple sectors

 Multi-sector neighborhoods are very useful for data with an irregular spatial distribution or clustering

Creating Surfaces

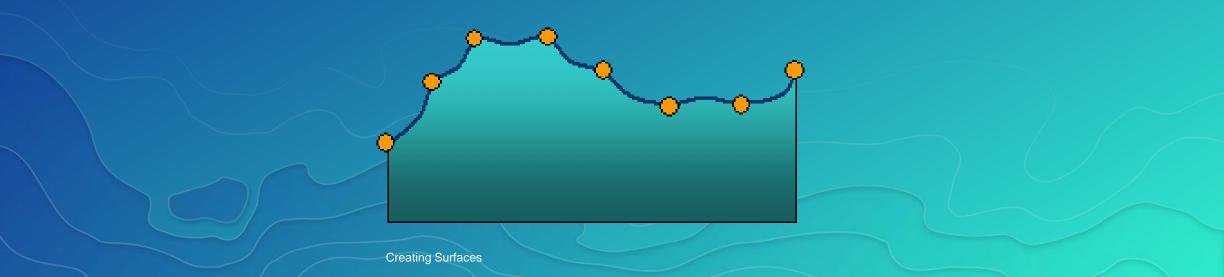
Questions to ask about your data

- Characteristics of phenomena?
- Sample spacing
 - Oversampled or needs extrapolation?
- Honor the input points?
- Barriers or discontinuities?
- Specialized needs
 - Topo To Raster (hydro applications)
- Suspected spatial patterns, trends, error?

Interpolation algorithms in ArcGIS

- Natural Neighbors
- Local Polynomial
- Kriging
- Cokriging
- Moving Window Kriging
- Empirical Bayesian Kriging
- Empirical Bayesian Kriging Regression Prediction (Pro 1.2)
- Minimum Curvature Spline
- Spline with Barriers
- Radial Basis Functions
- TopoToRaster
- **Global Polynomial**
- **Inverse Distance Weighted**
- Kernel Interpolation with Barriers
- Diffusion Interpolation with Barriers
- **Geostatistical Simulation**

Choosing an interpolation method

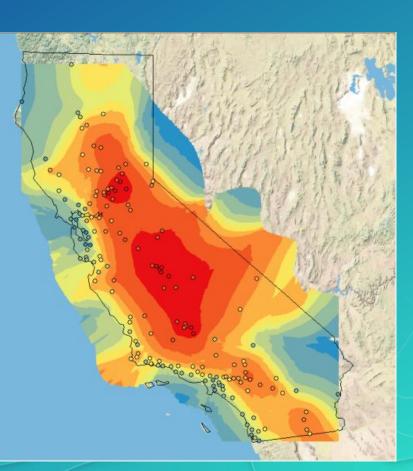

- You know nothing about your data...
 - Use Natural Neighbors. Its is the most conservative, honors the points. Assumes all highs and lows are sampled, will not create artifacts.
- Going the next step in complexity...
 - Use Kernel Interpolation or Empirical Bayesian Kriging
- Your surface is not continuous...
 - Use Kernel Interpolation or Spline with Barriers if you know there are faults or other discontinuities in the surface.
- Your input data is contours...
 - Use TopoToRaster. It is optimized for contour input. If not creating a DEM, turn off the drainage enforcement option.
 - You want a geostatistical method...
 - Use Empirical Bayesian Kriging
- If you have covariates...
 - **Use EBK Regression Prediction or Cokriging**

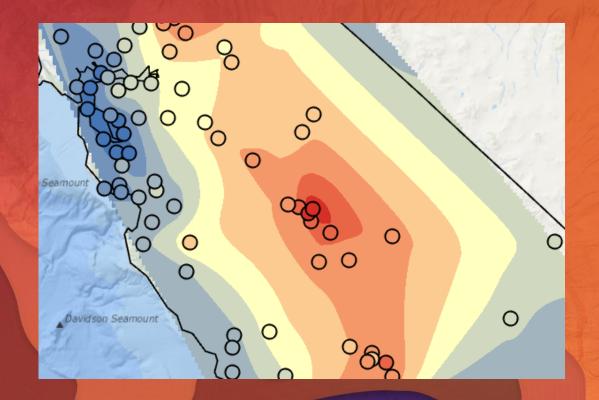
Creating Surfaces

Considerations in choosing an interpolator

- Standard error of prediction
- Stationarity
- Normally distributed
- Exact interpolator
- Support barriers
- Speed

The simplest, safest interpolator... Natural Neighbor


🔨 Natural Neighbor	
Input point features	
O3_Sep06_3pm	I 🖆 🗌
Z value field OZONE	
Output raster	
c:\Temp\empty.gdb\nn	
Output cell size (optional)	
500	
OK Cancel Environme	



Creating Surfaces

Kernel Interpolation

~	Kernel Interpolation With Barriers			x
•	Input features			*
	·	-	2	
•	Z value field			
			•	
•	Output geostatistical layer (optional)			
•	Output raster (optional)			
			2	
	Output cell size (optional)			
	100		E	
	Input absolute barrier features (optional)			
	j Maral Gardan Galando	_		
	Kernel function (optional) POLYNOMIAL5		-	
	Bandwidth (optional)			
	Order of polynomial (optional)		1	
	Ridge parameter (optional)		-	
			50	
	Output surface type (optional) PREDICTION		_	
	PREDICTION		•	
				Ŧ
	OK Cancel Environments	Show H	Help >>	

Easy interpolation of ozone concentration

Demonstration

You want a prediction standard error map

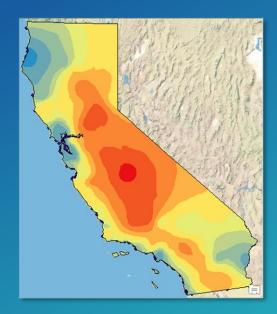
• Choose from:

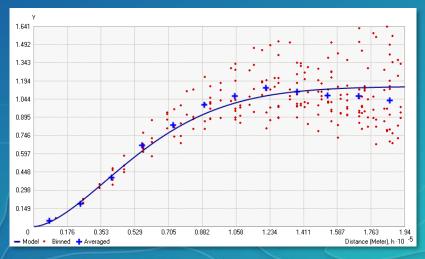
- Kernel Interpolation
- Local Polynomial Interpolation
- Kriging

You want an exact interpolator that honors the points

Choose from:

- Natural Neighbors
- Spline
- Radial Basis Function
- IDW


Creating Surfaces


The high and low values have not been sampled... and are important

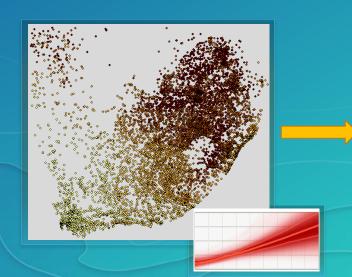
Do not useNatural NeighborsIDW

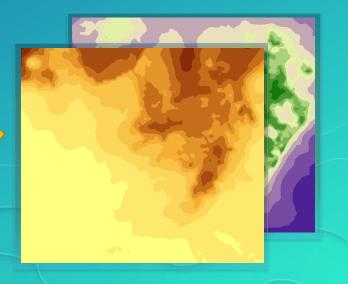
When to use Kriging

- Want prediction and prediction standard error
- Assumptions:
 - Spatially correlated
 - Stationary *
 - Normally distributed
 - or transformed to normal

Creating Surfaces

If you know the phenomenon is correlated with something measured more

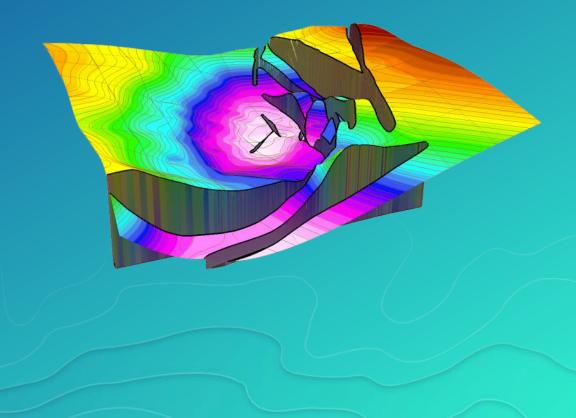

 If you have a sparsely measured variable such as temperature, which is correlated with another variable such as elevation that has much more sampling...


Use CoKriging or EBK Regression Prediction

Empirical Bayesian Kriging

- Advantages
 - Requires minimal interactive modeling
 - Allows accurate predictions of non-stationary data
 - More accurate than other kriging methods for small datasets
 - Geoprocessing tool
- Disadvantages
 - Processing is slower than other kriging methods.
 - Cokriging and anisotropy are unavailable.

Also available in ArcGIS Online and Enterprise Image Server

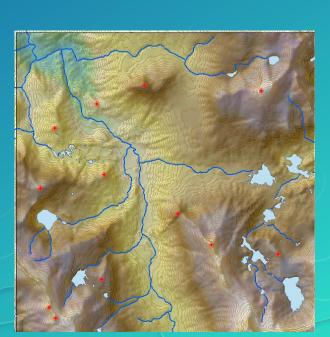

Kriging rainfall

Demonstration

Cliffs, faults, or barriers in your study area

- Kernel Interpolation with Barriers
- Diffusion Interpolation with Barriers
- Spline with Barriers
 - Uses Zoraster algorithm, similar result to ZMap
 - Straight line barrier exclusion

~	Kernel Interpolation With Barriers	[x							
•	Input features			*							
•	▼ Z value field		<u> </u>								
•	Output geostatistical layer (optional)		•								
•	Output raster (optional)										
	Output cell size (optional)	4				/					
		ſ	ع کي ا	pline wit	ίh Β	larriers				×	3
	Input absolute barrier features (optional)		● In	put poin	t fea	atures		•			
	Kernel function (optional)		• Z	value fiel	ld				_		
	Bandwidth (optional)		In	iput barri	ier f	eatures (option	al)				
	Order of polynomial (optional)		0	utput cel	l siz	e (optional)		•			
	Ridge parameter (optional)			utput ras	ster				<u></u>		
	Output surface type (optional)								2		
	PREDICTION		Sr	noothing	Fac	tor (optional)			0		
•	OK Cancel Environments Show										Ŧ
	ok Cancer Environments Snow			ОК	ן ר	Cancel	Environments	Show H	lelp >:	>	ר
				OIL		Concer	Environmenta	DIIOWI	icip > 2	· ·	41


Geologic interpolation with barriers

Demonstration

For contour input, and creating hydrologic DEMs

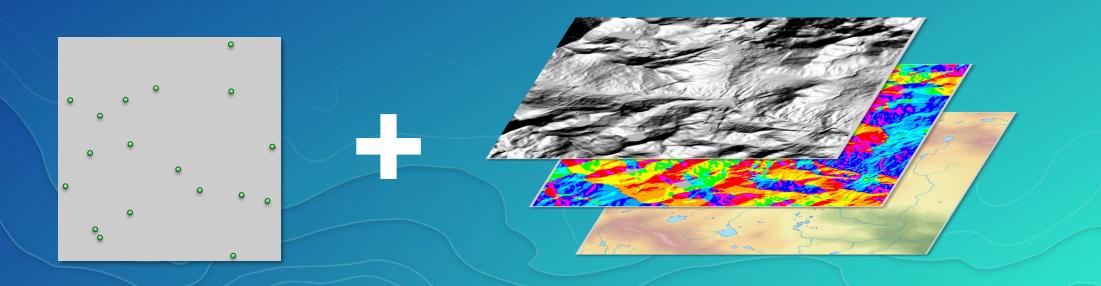
- Topo To Raster
 - ANUDEM
- Inputs
 - Spot heights
 - Contours
 - Streams
 - Sinks
 - Lakes
- Optional drainage enforcement

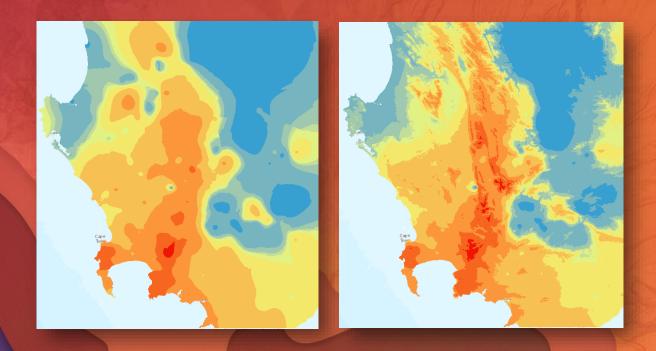
DEM creation with TopoToRaster

Demonstration

Your input is polygons

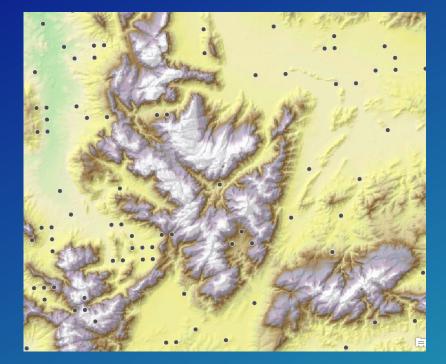
Use Areal Interpolation

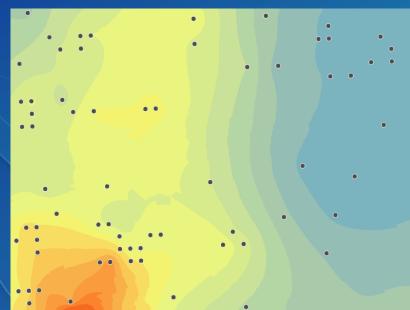



- Statistically robust method for creating surfaces from aggregated polygon data
- And aggregating back to other polygons
- Now available in Pro 2.0

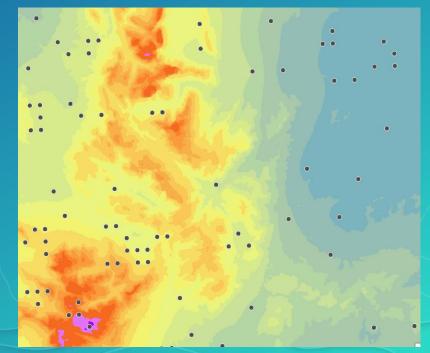
Your have inputs points plus explanatory raster data

Use EBK Regression Prediction

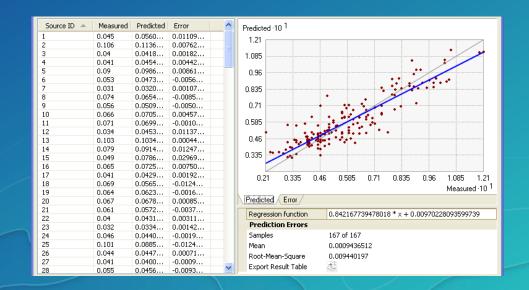

- A form of multivariate spatial regression
- It uses EBK with explanatory rasters
 - transformed into their principal components
 - used as the explanatory variables in the regression model
 - solves the problem of multicollinearity



EBK Regression Prediction

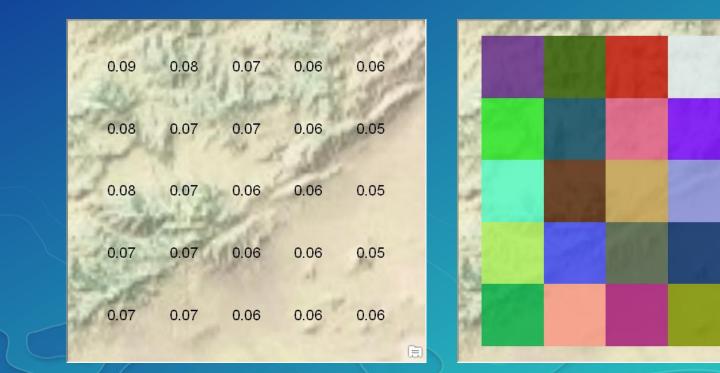

Demonstration

EBK


EBK Regression Prediction

How good is your surface?

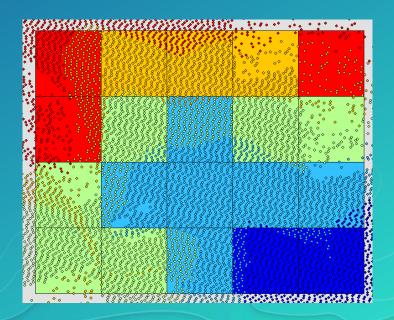
- Standard Error surface
- Cross Validation
- Subset Features


5	Subset Features		×
•	Input features		^
		2	
•	Output training feature class		
		2	
	Output test feature class (optional)		
		2	
	Size of training feature subset (optional)	50	
	L Subset size units (optional)		
	PERCENTAGE_OF_INPUT	~	
			\mathbf{v}
	OK Cancel Environments Show	Help >>	

Creating Surfaces

Your input is equally spaced points

 If input points are already equally spaced on a regular grid, you probably don't need to interpolate, just use PointToRaster



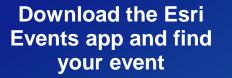
Ξ

You have many input points per output cell

 If your data is highly oversampled, you probably do not need to interpolate, you can just use the PointToRaster tool, and select the statistic of interest.

Noint to Raster	
Input Features	
Value field Shape.Z	
Output Raster Dataset c:\Temp\outras Cell assignment type (optional) SI IM	
Cell assignment type (optional) SUM MEAN MEAN Priority field (optional) STANDARD_DEVIATION NONE MINIMUM	
Cellsize (optional) RANGE COUNT 250	
OK Cancel Environments Show Help >>	

Creating Surfaces

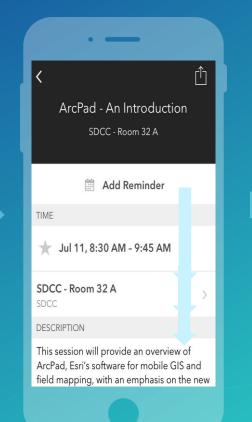

Working with VERY large input point data

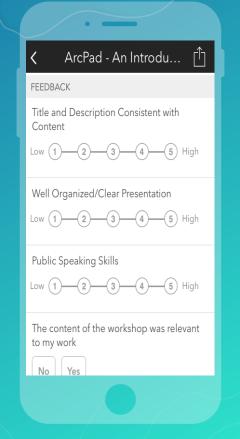
- Point To Raster
 - Most frequent
 - Sum, mean std. deviation
 - Minimum, maximum, range, count
- Smaller input extent
- Subset Features

The slide to remember...


- 1) Understand your data
- 2) Experiment with interpolators and parameters
- **3)** Create surfaces
- 4) Evaluate your surfaces
- 5) Refine parameters and *repeat...*

Please Take Our Survey on the Esri Events App!




Select the session you attended

Scroll down to find the survey

Complete Answers and Select "Submit"

