
Python – Raster Analysis
Kevin M. Johnston

Nawajish Noman

Outline

• Managing rasters and performing analysis with Map Algebra

• How to access the analysis capability

- Demonstration

• Complex expressions and optimization

- Demonstration

• Additional modeling capability: classes

- Demonstration

• Full modeling control: NumPy arrays

- Demonstration

A complex model

Emerald Ash Borer

Originated in Michigan

Infest ash trees

100% kill

Coming to Vermont

http://en.wikipedia.org/wiki/File:Agrilus_planipennis_1.jpg

The Ash Borer model

• Movement by flight

- 20 km per year

- Vegetation type and ash density (suitability surface)

• Movement by hitchhiking

- Roads

- Camp sites

- Mills

- Population

- Current location of the borer (suitability surface)

• Random movement

Typical problem just like yours: The Characteristics

• Complex

• Multiple input types

- Need to work with rasters along with features and tables

• Scenarios

• Repeat analysis by using different parameter values

• Dynamic

- Time is explicit, need to run sections multiple times

• Enhanced capabilities

- Need to take advantage of 3rd party Python packages

• Reusable

- Repeat the workflow with the same or different set of data

• Performance and optimization

Ideal for Map Algebra and Python scripting

The Ash Borer model

• Prepare the data

• An iterative model – based on a year

• Three sub models run individually each iteration and the results are combined

- Movement by flight (run 3 different seasons)

- Movement by hitchhiking (run once)

- Random movement (run once)

Raster analysis – Preparing the data

• To prepare and manage raster data

- Displaying

- Adding, copying, deleting, etc.

- Mosaic, Clip, etc.

- Raster object

- NumPy, ApplyEnvironment, etc.

• To perform analysis

- Spatial Analyst

- Map Algebra

What is Map Algebra

• Simple and powerful algebra to execute Spatial Analyst tools, operators, and

functions to perform geographic analysis

• The strength is in creating complex expressions

• Available through Spatial Analyst module

• Integrated in Python (all modules available)

Importing Spatial Analyst

• Module of ArcPy site package

• Like all modules must be imported

• To access the operators and tools in an algebraic format the imports are important

import arcpy

from arcpy import env # Analysis environment

from arcpy.sa import *

General syntax

• Map Algebra available through an algebraic format

• Simplest form: output raster is specified to the left of an equal sign and the tool and

its parameters on the right

• Comprised of:

- Input data - Operators

- Tools - Parameters

- Output

from arcpy.sa import *

outRas = Slope(indem)

Input for analysis

• Rasters

• Features

• Numbers and text

• Objects

• Constants

• Variables

Tip: It is good practice to set the input to a variable and use the

variable in the expression. Dataset names are quoted.

inRaster1 = "C:/Data/elevation“

outRas = Slope(inRaster1)

Map Algebra operators

• Symbols for mathematical operations

• Many operators in both Python and Spatial Analyst

• Creating a raster object (Raster class constructor - casting) indicates operator

should be applied to rasters

elevMeters = Raster("C:\data\elevation") * 0.3048
outSlope = Slope(elevMeters)

outRas = inRaster1 + inRaster2

Map Algebra tools

• All Spatial Analyst tools are available (e.g., Sin, Slope, Reclassify, etc.)

• Can use any Geoprocessing tools

outRas = Aspect(inRaster)

Tip: Tool names are case sensitive

Tool parameters

• Defines how the tool is to be executed

• Each tool has its own unique set of parameters

• Some are required, others are optional

• Numbers, strings, and objects (classes)

Slope(in_raster, {output_measurement}, {z_factor})

outRas = Slope(inRaster, “DEGREE”, 0.3048)

outRas = Slope(inRaster, “”, 0.3048)

outRas = Slope(inRaster)

Tip: Keywords are in quotes

1 2 3
1

OO

2

3

Map Algebra output

• Stores the results as a Raster object

• Object with methods and properties

• In scripting the output is temporary

• Associated data will be deleted if not explicitly saved

Access to Map Algebra

• Raster Calculator

- Spatial Analyst tool

- Easy to use calculator interface

- Stand alone or in ModelBuilder

• Python window

- Single expression or simple

exploratory models

• Scripting

- Complex models

- Line completion and colors

The Ash Borer model

• Prepare the data

• An iterative model – based on a year

• Three sub models run individually each iteration and the results are combined

- Movement by flight (run 3 different seasons)

- Movement by hitchhiking (run once)

- Random movement (run once)

Demo
Data management and

accessing the capability

Raster management tools

Raster Calculator

Python window

Model Builder

Simple expression

Outline

• Managing rasters and performing analysis with Map Algebra

• How to access the analysis capability

- Demonstration

• Complex expressions and optimization

- Demonstration

• Additional modeling capability: classes

- Demonstration

• Full modeling control: NumPy arrays

- Demonstration

Complex expressions

• Multiple operators and tools can be implemented in a single expression

• Output from one expression can be input to a subsequent expression

inRaster = ExtractByAttributes(inElevation, "Value > 1000")

out = Con(IsNull(inRaster), 0, inRaster)

More on the raster object

• A variable with a pointer to a dataset

• Output from a Map Algebra expression or from an existing dataset

• The associated dataset is temporary (from Map Algebra expression) - has a

save method

• A series of properties describing the associated dataset

- Description of raster (e.g., number of rows)

- Description of the values (e.g., mean)

outRas = Slope(inRaster)

outRas.save("sloperaster")

Optimization

• A series of local tools (Abs, Sin, CellStatistics, etc.) and operators can be optimized

• When entered into a single expression each tool and operator is processed on a per

cell basis

The Ash Borer model

• Prepare the data

• An iterative model – based on a year

• Three sub models run individually each iteration and the results are combined

- Movement by flight (run 3 different seasons)

- Movement by hitchhiking (run once)

- Random movement (run once)

Movement by hitchhiking

• Hitchhike on cars and logging trucks

• Most likely spread around

- Roads

- Populated areas (towns and camp areas)

- Commercial area (mills)

• Have a susceptibility surface

- Vegetation types and density of ash

• Nonlinear decay

• Random points and check susceptibility

Demo
Movement by hitchhiking

Roads, campsites, mills,

population,

and current location

(suitability)

Complex expressions

Raster object

Optimization

Outline

• Managing rasters and performing analysis with Map Algebra

• How to access the analysis capability

- Demonstration

• Complex expressions and optimization

- Demonstration

• Additional modeling capability: classes

- Demonstration

• Full modeling control: NumPy arrays

- Demonstration

Classes

• Objects that are used as parameters to tools

- Varying number of arguments depending on the

parameter choice (neighborhood type)

- The number of entries can vary depending on

situation (remap table)

• More flexible

• Query the individual arguments

Classes - Categories

• General

- Fuzzy - Time

- Horizontal Factor - Vertical Factor

- KrigingModel - Radius

- Neighborhood - Transformation functions

• Composed of lists

- Reclass - Weighted reclass tables

- Topo

General classes - Capability

• Creating

• Querying

• Changing arguments

neigh = NbrCircle(4, "MAP")

radius = neigh.radius

neigh.radius = 6

Classes composed of lists

• Topo

• Reclassify

• Weighted Overlay

inContours = TopoContour([['contours.shp', 'spot_meter']])

remap = RemapValue([["Brush/transitional", 0],
["Water", 1],["Barren land", 2]])

myWOTable = WOTable([[inRaster1, 50, "VALUE", remapsnow],
[inRaster2, 20, "VALUE", remapland],
[inRaster3, 30, "VALUE", remapsoil]], [1, 9, 1])

Vector integration

• Feature data is required for some Spatial Analyst Map Algebra

- IDW, Kriging, etc.

• Geoprocessing tools that operate on feature data can be used in an expression

- Buffer, Select, etc.

dist = EucDistance(arcpy.Select_analysis("schools", "#", "Pop>2000"))

The Ash Borer model

• Prepare the data

• An iterative model – based on a year

• Three sub models run individually each iteration and the results are combined

- Movement by flight (run 3 different seasons)

- Movement by hitchhiking (run once)

- Random movement (run once)

Movement by flight

• Fly from existing locations - 20 km per year

• Based on iterative time steps

- Spring, summer, fall, and winter

• Time of year determines how far it can move in a time step

• Suitability surface based on vegetation type and ash density

• Iterative movement logic

- “Is there a borer in my neighborhood”

- “Will I accept it” – suitability surface

Demo
Movement by flight

20 km per year

Vegetation type/ash density

(suitability)

Classes

Using variables

Vector integration

Outline

• Managing rasters and performing analysis with Map Algebra

• How to access the analysis capability

- Demonstration

• Complex expressions and optimization

- Demonstration

• Additional modeling capability: classes

- Demonstration

• Full modeling control: NumPy arrays

- Demonstration

NumPy Arrays

• A generic Python storage mechanism

• Create custom tool

• Access the wealth of free tools built by the scientific community

- Clustering

- Filtering

- Linear algebra

- Optimization

- Fourier transformation

- Morphology

NumPy Arrays

• Two tools

- RasterToNumPyArray

- NumPyArrayToRaster

1

2 4

3

4

3

1

2 4

3

4

3

NumPy Array

Raster

The Ash Borer model

• Prepare the data

• An iterative model – based on a year

• Three sub models run individually each iteration and the results are combined

- Movement by flight (run 3 different seasons)

- Movement by hitchhiking (run once)

- Random movement (run once)

Random movement

• Some of the movement cannot be described deterministically

• Nonlinear decay from known locations

• Specific decay function not available in ArcGIS

• NumPy array

- Export raster

- Apply function

- Import NumPy array back into a raster

• Return to ash borer model and integrate three movement sub models

Demo
Random movement

Random movement based on nonlinear

decay from existing locations

Custom function

NumPy array

Summary

• When the problem becomes more complex you may need additional capability

provided by Map Algebra

• Map Algebra powerful, flexible, easy to use, and integrated into Python

• Accessed through: Raster Calculator, Python window, ModelBuilder (through Raster

Calculator), and scripting

• Raster object and classes

• Create models that can better capture interaction of phenomena

Other Spatial Analyst sessions

• Spatial Analyst: An Introduction

- Tues 10:15 – 11:30

- Wed 10:15 – 11:30

• Finding the Best Locations Using Suitability Modeling

- Tues 1:30 – 2:45

- Thurs 8:30 – 9:45

• Identifying the Best Paths with Cost Distance

- Tues 3:15 – 4:30

- Wed 1:30 – 2:45

• Suitability Modeling and Cost Distance Analysis Integrated Workflow (Demo Theater)

- Wed 4:30 – 5:15

• Python: Raster Analysis

- Tues 8:30 – 9:45

• Getting Started With Map Algebra Using the Raster Calculator and Python (Demo

Theater)

- Thurs 9:30 – 10:15
9

Other Spatial Analyst sessions

• Modeling Renewable Energy Potential Using ArcGIS (Demo Theater)

- Tues 1:30 – 2:15

• Creating Watersheds and Stream Networks

- Wed 10:00 – 10:30

• Hydrologic and Hydraulic Modeling

- Wed 3:15 – 4:30

- Thurs 1:30 – 2:45

• GIS Techniques for Floodplain Delineation (Demo Theater)

- Tues 12:30 – 1:15

• Creating a Hydrologically Conditioned DEM (Demo Theater)

- Tues 10:30 – 11:15

• Creating Surfaces from Various Data Sources

- Tues 3:15 – 4:30

- Thurs 3:15 – 4:30

• Choosing the Best Kriging Model for Your Data (Demo Theater)

- Wed 11:30 – 12:15

Other Spatial Analyst sessions

• Surface Interpolation in ArcGIS (Demo Theater)

- Thurs 10:30 – 11:15

• Creating Watersheds and Stream Networks (Demo Theater)

- Wed 10:00 – 10:30

• Working with Elevation Services (Demo Theater)

- Tues 10:30 – 11:15

- Wed 9:30 – 10:15

• Building Python Raster Functions (Demo Theater)

- Tues 10:30 – 11:15

• Raster Analytics in Image Server: An Introduction

- Wed 3:15 – 4:30

• Raster Classification with ArcGIS Desktop (Demo Theater)

- Thurs 9:30 – 10:15

• Raster Function Processing (Demo Theater)

- Thurs 10:30 – 11:15

Want to learn more?

• Documentation

- ArcGIS Pro Help

- Terminology and user interface reference guide

• Related Esri Training and Tutorials

- Introduction to ArcGIS Pro for GIS Professionals (Instructor Led)

- Getting Started with ArcGIS Pro (Virtual Campus)

- Get Started with ArcGIS Pro (Learn ArcGIS)

• Additional Resources

- ArcGIS Pro Site

https://pro.arcgis.com/en/pro-app/help/main/welcome-to-the-arcgis-pro-app-help.htm
https://pro.arcgis.com/en/pro-app/get-started/arcgis-pro-terminology.htm
http://training.esri.com/gateway/index.cfm?fa=catalog.courseDetail&CourseID=50133076_10.x
http://training.esri.com/gateway/index.cfm?fa=catalog.webCourseDetail&courseid=2889
http://learn.arcgis.com/en/projects/get-started-with-arcgis-pro
https://pro.arcgis.com/en/pro-app

Please Take Our Survey on the Esri Events App!

Select the session
you attended

Scroll down to
find the survey

Complete Answers
and Select “Submit”

Download the Esri
Events app and find

your event

