

# Spatial Analyst – Finding the Best Locations Using Suitability Modeling

Kevin M. Johnston

Elizabeth Graham

## Suitability modeling

- Where to site a new housing development?
- Which sites are better for deer habitat?
- Where is economic growth most likely to occur?
- Where is the population at the greatest risk if a chemical spill were to happen?



#### What we know

- The best locations can be determined from the features at each location
- You can identify the features that define the best locations
- You can quantify the relative preference of the features relative to one another
- You know what is not important to the phenomenon
- The attributes and numbers associated with the data vary in type and meaning

#### The presentation outline

- Overview for creating a suitability model
- Defining criteria and transforming to common scale Demonstration
- Weighting and combining the criteria Demonstration
- Locating the phenomenon Demonstration
- Case studies and fuzzy logic Demonstration

## **Manipulation of raster data - Background**

- Locational perspective of the world
- Defines a portion of the landscape's attributes
- Worm's eye view
- To return a value for each cell you must know
  - What is your value
  - What function to apply
  - What cell locations to include in the calculations
    - Within a grid
    - Between grids

## Discrete and continuous phenomena

- Discrete phenomena
  - Landuse
  - Ownership
  - Political boundaries
- Continuous phenomena
  - Elevation
  - Distance
  - Density
  - Suitability

#### Discrete



Vegetation 0 = Barren 1 = Forest 2 = Water

#### Continuous

| 1.12 | 1.75 | 1.81       | 2.03       | Rainfall<br>(inches) |
|------|------|------------|------------|----------------------|
| 0.26 | 1.63 | 1.87       | 1.98       |                      |
| 0.00 | 0.91 | 0.73       | 1.42       |                      |
| 0.00 | 0.18 | No<br>Data | No<br>Data |                      |

## General suitability modeling methodology



## **Define goal**

- Most important and most time consuming glossed over
- Measurable
- The gap between desired and existing states
- Define the problem
  - "Locate a ski resort"
- Establish the over arching goal of the problem
  - Make money
- Identify issues
  - Stakeholders
  - Legal constraints

#### **Identify evaluation methods**

- How will you know if the model is successful?
- Criteria should relate back to the overall goals of the model
- May need to generalize measures
  - "On average near the water"
  - Minimize cost; Maximize the visual quality
- Determine how to quantify
  - "Drive time to the city"
  - Reduce the lung disease amount of carbon dioxide
- The more the better; the less the better

## Models and sub-models

- Break down problem into sub models
  - Helps clarify relationships, simplifies problem



## ModelBuilder

#### ArcGIS graphical model building capabilities



## **Types of suitability models - Binary**

- Use for simple problems query
- Classify layers as good (1) or bad (0) and combine:

BestSite = Terrain & Access & Cost

- Advantages: Easy
- Disadvantages:
  - No "next-best" sites
  - All layers have same importance
  - All good values have same importance



## **Types of suitability models - Weighted**

- Use for more complex problems
- Classify layers into suitability 1–9
  - Weight and add together:

BestSite = (Terrain \* 0.5) + (Access \* 0.3) + (Cost \* 0.2)

- Advantages:
  - All values have relative importance
  - All layers have relative importance
  - Suitability values on common scale
- Disadvantages:
  - Preference assessment is more difficult



# General suitability modeling methodology



## The suitability modeling model steps

- Determine significant layers for each sub model from the phenomenon's perspective
  - May need to derive data
- Transform values within a layer onto a relative scale
- Weight the importance of each layer and each sub model relative to one another
- Combine layers and sub models together
- Locate the best areas meeting your goals

#### The presentation outline

- Overview for creating a suitability model
- Defining criteria and transforming to common scale Demonstration
- Weighting and combining the criteria Demonstration
- Locating the phenomenon Demonstration
- Case studies and fuzzy logic Demonstration

## The suitability modeling model steps



### **Determining significant layers – Base and deriving data**

- The phenomena you are modeling must be understood
- What influences the phenomena must be identified
- How the significant layers influence the phenomena must be determined
- Irrelevant information must be eliminated
- Simplify the model
  - Complex enough to capture the essence and address the question

#### **Base and deriving data**

- Base data may not be useful for measuring all criteria
  - Need to measure access, not road location
- May be easy:
  - ArcGIS Spatial Analyst tools
  - Distance to roads
- May be harder:
  - Require another model
  - Travel time to roads





# Why transform values?

#### Ratio:



#### Interval:



# Why transform values?

### **Ordinal:**



#### Nominal:

| Amos Andy     | 555-2543 |
|---------------|----------|
| Andrews Fred  | 555-6769 |
| Aprils James  | 555-9063 |
| Aster Susan   | 555-7754 |
| Atwater Henry | 555-2156 |



## **Transform values – Define a scale of suitability**

#### Define a scale for suitability

- Many possible; typically 1 to 9 (worst to best)
- Reclassify layer values into relative suitability
- Use the same scale for all layers in the model

#### Accessibility sub model

#### Development sub model



Within and between layers



**Distance to roads** 



Suitability for Ski Resort

### **Transform values: Value/Utility functions**

Transform values with equations – ratio data
Mathematical relationship between data and suitability



Implement with Rescale by Function or Map Algebra:

WaterSuit = 9 + (-0.0018 \* WaterDist)

## **Reclassify versus Rescale by Function**

- Reclassify
  - Categorical input
  - Discrete output
  - One to one (or range) mapping
- Rescale by Function
  - Continuous input
  - Continuous output
  - Linear and non linear functions

## Tools to transform your values – convert to suitability







## **Reclassify versus Rescale by Function**

# Reclassify

For discrete input and output (or input has continuous known class breaks)



## **Rescale by Function**

For continuous input and output

Suitability continuously changes with each unit of change of the input data



If input is continuous - stair step effect caused by the discrete classes



**Nonlinear functions** 

## **Rescale by Function: the functions**





Exponential



#### Large



# The function can be further refined by the function parameters

# Anatomy of applying a function



### **Rescale by Function – Data dependent**





Suitability of deer within the study area: Data dependent scenario

#### Input range in study area: 3000 to 5000



Suitability of deer relative to population: Data independent scenario

Suitability of deer within the study area that reach a threshold

# Suitability workflow



Deniving base data and transforming data Reclassify Rescale by Function

## Additional thoughts from multicriteria decision making

- GIS and Multicriteria Decision Analysis (J. Malczewski)
- Operation Research (linear programming)
- Decision support
- Provide you with alternative approaches
  - Problem you are addressing
  - Available data
  - Understanding of the phenomenon

 Make you think about how to transform the values and weight within and between the criteria

## **Transform values**

- Direct scaling (as you have seen)
- Value/utility functions (Rescale by Function)
- Linear transformation
  - Divide each value by the maximum value
  - Scale 0 1 (relative order of magnitude maintained)
  - Apply to each layer
- Others:
  - Fuzzy sets

#### The presentation outline

- Overview for creating a suitability model
- Defining criteria and transforming to common scale Demonstration
- Weighting and combining the criteria Demonstration
- Locating the phenomenon Demonstration
- Case studies and fuzzy logic Demonstration

## The suitability modeling model steps



#### Weight and combine the layers

- Certain criteria may be more significant than others and must be weighted appropriately before combining
  - Terrain and access may be more significant to the ski area than cost
- Use Weighted Overly, Weighted Sum, or Map Algebra



SkiSite = (Terrain \* 0.5) + (Access \* 0.3) + (Cost \* 0.2)
## The Weighted Overlay and Weighted Sum tools

- Weights and combines multiple inputs
  - Individual criteria (layers)
  - Sub models



| 🔨 Weighted Overlay          |        |                             | ×             |       |              |              |
|-----------------------------|--------|-----------------------------|---------------|-------|--------------|--------------|
| Weighted overlay table      |        |                             | Â             |       |              |              |
| Raster % Influenc           | Field  | Scale Value                 | <b>• +</b>    |       |              |              |
|                             | 3      | 3                           |               |       |              |              |
|                             | 5      |                             | Neighted Sum  |       |              | ×            |
|                             | 6      | 6                           | Input rasters |       |              | *            |
|                             | 7      | 7                           |               |       |              |              |
|                             | 8      | 8                           |               |       |              | - 🖻          |
|                             | 9      | 9                           | Raster        | Field | Weight       |              |
|                             | NODATA | NODATA                      | 🎝 Terrain     | VALUE | 1            |              |
| * Cost 40                   | Value  | <u> </u>                    | Access        | VALUE | 1            | ×            |
|                             | 1      | 1                           | 🖧 Cost        | VALUE | 1            |              |
| 4                           | 2      | 2                           |               |       |              | 1            |
|                             | 3      | 3                           |               |       |              |              |
|                             | 4      | 4                           |               |       |              | +            |
|                             | 6      | 6                           |               |       |              |              |
|                             | 7      | 7                           |               |       |              |              |
|                             | 8      | 8                           |               |       |              | •            |
|                             | 9      | 9                           | Output raster |       |              |              |
|                             | NODATA | NODATA                      | C:\skisite    |       |              | <b></b>      |
| Sum of influence            | 100    | Set Equal Influe<br>From To |               |       |              |              |
| 1 to 9 by 1                 | •      |                             |               |       |              |              |
| Output raster<br>C:\skisite |        |                             |               |       |              |              |
|                             | 0      | K Cancel Ar                 |               |       |              |              |
|                             |        |                             |               |       |              | -            |
|                             |        |                             |               | ОК    | Cancel Apply | Show Help >> |

Demo Weight and combine Weighted Overlay Weighted Sum

## **Additional thoughts - Weight**

- Rating Method
  - Decision maker estimates weights on a predetermined scale
  - Point allocation approach
  - Ratio estimation procedure (Easton)
    - Arbitrarily assign the most important, other assigned proportionately lower weights
- Ranking Method
  - Rank order of decision maker (1 most, 2, second...)
- Pairwise
- Trade-off analysis

## Weight: Pairwise

- Analytical hierarchy process (AHP) (Saaty)
- Three steps
  - Generate comparison matrix
  - Compute criterion weights
    - Sum columns; divide by column sum; average rows
  - Estimate consistency ratio (math formulas)
- Pairwise comparison
  - Rate1: Equal importance 9: Extreme importance

| Criteria | Terrain | Access | Cost |
|----------|---------|--------|------|
| Terrain  | 1       | 3      | 6    |
| Access   | 1/3     | 1      | 8    |
| Cost     | 1/6     | 1/8    | 1    |

## Weight: Trade-off

- Direct assessment of trade offs the decision maker is willing to make (Hobbs and others)
- Compares two alternatives with respect to two criteria defining preference or if indifferent
- Compare other combinations

| Ş     | Site 1 | Site 2 |        |             |
|-------|--------|--------|--------|-------------|
| Slope | Aspect | Slope  | Aspect | Preference  |
| 1     | 10     | 10     | 1      | 1           |
| 2     | 10     | 10     | 1      | 1           |
| 4     | 10     | 10     | 1      | Indifferent |
| 6     | 10     | 10     | 1      | 2           |
| 8     | 10     | 10     | 1      | 2           |
| 10    | 10     | 10     | 1      | 2           |

## Combine

- Decision rules
- Simple Additive Weighting (SAW) method
- Value/utility functions (Keeney and Raiffa)
- Group value/utility functions
- Ideal point method
- Others:
  - Concordance method
  - Probabilistic additive weighting
  - Goal programming
  - Interactive programming
  - Compromise programming
  - Data Envelopment Analysis

## **Combine: SAW**

- What we did earlier
- Assumptions:
  - Linearity
  - Additive
    - No interaction between attributes
- Ad hoc
- Lose individual attribute relationships
- All methods make some trade offs

## **Combine: Ideal Point**

- Alternatives are based on separation from the ideal point
- General steps
  - Create weighted suitability surface for each attribute
  - Determine the maximum value
  - Determine the minimum value
  - Calculate the relative closeness to the ideal point



- Rank alternatives
- Good when the attributes have dependencies

### **Combine: Group Value**

- Method for combining the preferences of different interest groups
- General steps:
  - Group/individual create a suitability map
  - Individuals provide weights of influence of the other groups
  - Use linear algebra to solve for the weights for each individual's output
  - Combine the outputs
- Better for value/utility functions

#### The presentation outline

- Overview for creating a suitability model
- Defining criteria and transforming to common scale Demonstration
- Weighting and combining the criteria Demonstration
- Locating the phenomenon Demonstration

Case studies and fuzzy logic - Demonstration

## The suitability modeling model steps



#### Locate

- Model returns a suitability "surface"
  - Ranks the relative importance of each site to one another relative to the phenomenon
- Create candidate sites
  - Select cells with highest scores
  - Define regions with unique IDS (Region Group)
  - Eliminate regions that are too small
- Choose between the candidates





## **Locate Regions**

- Requirements for the phenomenon to function
- Region characteristics
  - Size (500 contiguous acres)
  - Shape (compact as possible)
  - Number of regions
    - Minimum and maximum region sizes
- Inter spatial relationships
  - Minimum distance between patches
  - Maximum distance between patches
- Evaluation methods
- Optimum configuration
  - Combinatorial evaluation

| )                           | Locate Regions         | =        |
|-----------------------------|------------------------|----------|
| arameters   Envir           | onments                | ?        |
| ,<br>SuitSurface            |                        | - 崖      |
| Total area                  |                        | 24.732   |
| Area units                  |                        |          |
| Square kilometers           |                        | -        |
| Output raster               |                        |          |
| FinalRegons                 |                        | <u>+</u> |
| Number of regions           |                        | 3        |
| Region shape                |                        |          |
| Circle                      |                        | -        |
| Shape/Utility tradeo        | rff (%)                | 50       |
| Evaluation method           |                        |          |
| Highest average va          | lue                    | -        |
| Region minimum a            | rea                    | 5        |
| Region maximum a            | rea                    | 10       |
| Minimum distance<br>regions | between                | 5        |
| Maximum distance<br>regions | between                |          |
| Distance units              |                        |          |
| Kilometers                  |                        | -        |
| input raster or featu       | re of existing regions |          |
| ExistingRegions             |                        | - 🛤      |

Candidate Regions PRG

Cell allocation is based on the shape/utility tradeoff



Candidate Regions PRG

> Tradeoff: shape/utility



Candidate Regions PRG



Candidate Regions PRG



## Select the "best" region(s)

- Evaluation criteria
  - Highest average value
  - Highest sum
  - Highest median value
  - Highest single value
  - Lowest single value
  - Largest core area
  - Greatest edge
  - Highest cumulative of core
- While honoring spatial constraints
- Combinatorial approach

## Why do patches need to be connected?

Fragmentation



#### Metapopulation



- Logging Roads
- Supply routes for military locations
- Fire fighting routes

Demo Locating the phenomenon Locate Regions Cost Connectivity (a sneak peek)

## General suitability modeling methodology



## Validation

- Ground truth visit the site in person
- Use local knowledge and expert experience
- Alter values and weights
- Perform sensitivity and error analysis

## Validate results: Sensitivity analysis (and error analysis)

- Systematically change one parameter slightly
- See how it affects the output
- Error
  - Input data
  - Parameters
  - Address by calculations or through simulations

## Limitation of a suitability model

- Results in a surface indicating which sites are more preferred by the phenomenon than others
- Does not give absolute values (can the animal live there or not; ordinal not interval values)
- Heavily dependent on the transformed values within a criterion and the weights between criteria

#### The presentation outline

- Overview for creating a suitability model
- Defining criteria and transforming to common scale Demonstration
- Weighting and combining the criteria Demonstration
- Locating the phenomenon Demonstration
- Case studies and fuzzy logic Demonstration

#### **Additional resource**

- Two case studies in the Find locations section of the case studies in the online help
- Suitability modeling:
  - http://desktop.arcgis.com/en/analytics/case-studies/understanding-the-suitability-modelingworkflow.htm
- Case study and 4 lessons with data (ArcGIS desktop and Pro)
  - Lesson 1: Exploring and deriving data
  - Lesson 2: Transforming data onto a common scale
  - Lesson 3: Weighting and Combining Data
  - Lesson 4: Locating and connecting regions

## **Additional resource**

Cost distance analysis

http://desktop.arcgis.com/en/analytics/case-studies/understanding-cost-distanceanalysis.htm

- Case study with 4 lessons with data
  - Lesson 1: Creating a cost surface
  - Lesson 2: Creating an optimal connectivity network
  - <u>Lesson 3: Creating a least cost path</u>
  - Lesson 4: Creating a corridor

Demo Case studies and lessons Suitability modeling Cost distance analysis

## The suitability modeling model steps

- Determine significant layers for each sub model from the phenomenon's perspective
  - May need to derive data
- Transform values within a layer onto a relative scale
- Weight the importance of each layer and each sub model relative to one another
- Combine layers and sub models together
- Locate the best areas meeting your goals

## **Fuzzy overlay – The problem**

- Inaccuracies in geometry
- Inaccuracies in classification process



#### **Fuzzy overlay – Transform values**

Predetermined functions are applied to continuous data

0 to 1 scale of possibility belonging to the specified set

#### Membership functions

- FuzzyGaussian normally distributed midpoint
- FuzzyLarge membership likely for large numbers
- FuzzyLinear increase/decrease linearly
- FuzzyMSLarge very large values likely
- FuzzyMSSmall very small values likely
- FuzzyNear- narrow around a midpoint
- FuzzySmall membership likely for small numbers

#### **Fuzzy overlay - Combine**

- Meaning of the transformed values possibilities therefore no weighting
- Analysis based on set theory
- Fuzzy analysis
  - And minimum value
  - Or maximum value
  - Product values can be small
  - Sum not the algebraic sum
  - Gamma sum and product



Demo Fuzzy Analysis Fuzzification Fuzzy Overlay

## Summary

- Allocating one alternative influences the suitability of another
- Can be done in the vector world
- Multiple ways to transform values and define weights
- Multiple ways to combine the criteria
- Your transformation values and weights depend on:
  - the goal
  - the data
  - the understanding of the phenomenon
- How the values are transformed and weights defined can dramatically change the results
- Locate Regions identifies the best contiguous group of cells that meets the internal and inter- region spatial functional requirements

# Carefully think about how you transform your values within a criterion and weight between the criteria

## **Other Spatial Analyst sessions**

- Spatial Analyst: An Introduction
  - Tues 10:15 11:30
  - Wed 10:15 11:30
- Finding the Best Locations Using Suitability Modeling
  - Tues 1:30 2:45
  - Thurs 8:30 9:45
- Identifying the Best Paths with Cost Distance
  - Tues 3:15 4:30
  - Wed 1:30 2:45
- Suitability Modeling and Cost Distance Analysis Integrated Workflow (Demo Theater)
  - Wed 4:30 5:15
- Python: Raster Analysis
  - Tues 8:30 9:45
- Getting Started With Map Algebra Using the Raster Calculator and Python (Demo Theater)
  - Thurs 9:30 10:15

## **Other Spatial Analyst sessions**

- Modeling Renewable Energy Potential Using ArcGIS (Demo Theater)
  - Tues 1:30 2:15
- Creating Watersheds and Stream Networks
  Wed 10:00 10:30
- Hydrologic and Hydraulic Modeling
  - Wed 3:15 4:30
  - Thurs 1:30 2:45
- GIS Techniques for Floodplain Delineation (Demo Theater)
  - Tues 12:30 1:15
- Creating a Hydrologically Conditioned DEM (Demo Theater)
  Tues 10:30 11:15
- Creating Surfaces from Various Data Sources
  - Tues 3:15 4:30
  - Thurs 3:15 4:30
- Choosing the Best Kriging Model for Your Data (Demo Theater)
  Wed 11:30 12:15
### **Other Spatial Analyst sessions**

- Surface Interpolation in ArcGIS (Demo Theater)
  - Thurs 10:30 11:15
- Creating Watersheds and Stream Networks (Demo Theater)
  Wed 10:00 10:30
- Working with Elevation Services (Demo Theater)
  - Tues 10:30 11:15
  - Wed 9:30 10:15
- Building Python Raster Functions (Demo Theater)
  - Tues 10:30 11:15
- Raster Analytics in Image Server: An Introduction
  - Wed 3:15 4:30
- Raster Classification with ArcGIS Desktop (Demo Theater)
  Thurs 9:30 10:15
- Raster Function Processing (Demo Theater)
  - Thurs 10:30 11:15

## Want to learn more?

- Documentation
  - ArcGIS Pro Help
  - Terminology and user interface reference guide
- Related Esri Training and Tutorials
  - Introduction to ArcGIS Pro for GIS Professionals (Instructor Led)
  - <u>Getting Started with ArcGIS Pro</u> (Virtual Campus)
  - <u>Get Started with ArcGIS Pro</u> (Learn ArcGIS)
- Additional Resources
  - ArcGIS Pro Site

## Please Take Our Survey on the Esri Events App!





## Select the session you attended



# Scroll down to find the survey



#### Complete Answers and Select "Submit"



