

Working with Historical Imagery

Peter Becker

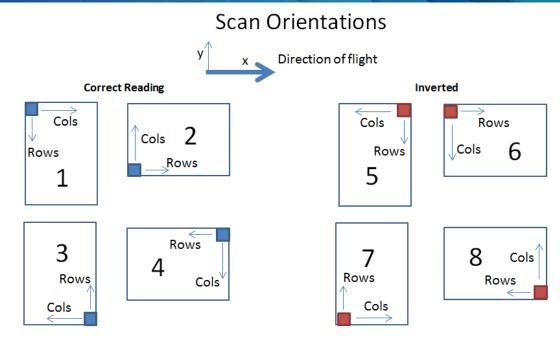
Historic Aerial Imagery - Objectives

- Manage & Share Collections of Historic Aerial Imagery
- View & use best imagery
 - By geography
 - By date, other attributes
- Geometric and Radiometric accuracy requirements vary
- Initial product :
 - Mosaic Dataset or Image Service
 - Approximate Georeferencing
 - Accuracy may be improved over time.

- Value:
 - Understand past
 - Legal ownership
 - Environmental reporting
 - Water rights
 - Property Boundaries
 - Finding UXO (Europe WWII)

Using Historical Imagery

Historic Aerial Imagery - Sources


- Film imagery from archives
 - Rolls of aerial film (typically 24 cm), Cut films, Contact Prints
 - Panchromatic, True Color, Color IR
 - 1930's 2000's
- Large collections exist
- Being Scanned

Scanning

- Typically scanned by
 - Photogrammetric scanner
 - Table top scanner
- Scan at about 20 microns / 1200ppi
 Higher resolution rarely needed
- Record scan direction \rightarrow
- Optimize Format and Compression
 - **TIF with JPEG_YCbCr compression** $(Q80 \sim 7x)$
 - Tiled with pyramids
 - Use OptimizeRasters on GitHub (https://github.com/Esri/OptimizeRasters)
- No need to generate statistics

is Scan Direction

Metadata

- Georeferencing
 - None Needs Manual Georeferencing
 - Poor Index Map Needs to be digitized
 - Good Digital Index from navigation data (> 1990)
 - Excellent Output from AT
- Film Metadata
 - Date (s)
 - Camera Type (Optional)
 - Camera Calibration (Optional)
 - Run Numbers (Optional)
- DTM Digital Terrain Model
 - Suitable may exist Export from World Elevation on ArcGIS Online
 - Else need advanced workflow (see later)

Workflow Options

• Basic

- Manually Georeference

- If a small number of images in flat areas

Standard

- Obtain/Create PhotoIndex
- Create Mosaic Dataset using workflow

Advanced

- Perform Aerial Triangulation
- For Large Numbers of Images

Basic Workflows

- Set TIF images to ReadOnly
- Georeference individual frames using Georeferencing tool
 - Try Approx and then Auto Georeference to World Imagery (or other base)
 - Else manually measure tie points using imagery base map
 - Typically 6 spread out are sufficient
 - Use Projective Transform
 - Use "Save", Do NOT use "Save As"

This results in set of georeferenced images with no sampling applied

- Optional
 - Create Mosaic
 - Create Tile Cache
 - Publish to ArcGIS Online

Standard Workflow

Create Mosaic Dataset - Recommend to use ArcGIS Pro 2.0

- Using best available georeferencing
- Use one of following
 - Imagery created in Basic Workflow
 - Frame Camera Raster type if orientation available (eg if Aerial Triangulation already exists)
 - Use Historical_Imagery_GP_Tools if photoindex available (See next slide on creating digital photo index)
 - See <u>http://esriurl.com/ImageryWorkflows</u> Image Management Tools

Optionally

- Publish as an Image Service
- Refine geometry
- Refine footprints
- Refine color correction
- Generate seamlines
- Generate Overview
- Create Tile Cache and publish to ArcGIS Online (or your portal)
- **Create Derived Mosaic Dataset that Combines all**


Creating Digital PhotoIndex

From Photo Index or Print Laydown

- Digitize locations and frame numbers by run & film number
- Build feature class \rightarrow (x,y) point for approximate photo center
- "How??" will depend on your data. Easiest method typically to:
 - Scan & georeference the Photo Index/Print Laydown
 - Manually create points for photo centers
- Populate "Key Historic Imagery Parameters" Table (next slide)

Create Film Report

Include other metadata about the flight - date, type of film, etc.

Build "Key Historic Imagery Parameters" Table Approximate X,Y (Geometry) COG (course over ground) - this will be calculated 'Raster' field: path and file name to each scanned file PhotoScaleF - Scale factor e.g. 5000 for 1:5000 **FocalLength** - In microns; e.g. 152400 for 6 inch **ScanDirection -** per previous diagram **ScanResolution** - in microns. If not known, can be estimated as 240000/Min(Cols,Rows) FrameSize - in microns e.g. 180000 for 18cm. If undefined then assumed to be 23cm Frame - As a 4 digit string, e.g. 0023 (not stored as an integer) Run - As a string Film - As a string Cols, Rows - Number of Cols and Rows of the image. Will be obtained from Image if not defined OffsetC, OffsetR - in microns. This is the offset of the camera center from the center of the scan. If undefined then assumed to be 0 Scan Center Other parameters optional - from Film Report OffsetR=0 e.g. AcquisitionDate, ScanDate, ScannerModel, FilmType, etc.

OffsetC is positive

Frame Center

Using Historical_Imagery_GP_Tools

- Geoprocessing Tools "Historical Imagery.pyt" available for download
- Get from esriurl.com/imageryworkflows , ImageManagement
- http://www.arcgis.com/home/item.html?id=d1b4e3afeda7405fb34578207f0ad256

Will build table(s) required as input to the *Frame Camera* Raster Type
 Frame Table and Camera Table corresponding to Exterior orientation and Interior orientation
 Can be separate geodatabase tables, or combined into one.

See in ArcGIS Help System: http://esriurl.com/FrameSchema http://esriurl.com/CameraSchema

Historical Imagery.pyt

EstimateCOG

Check Estimate Orientation Parameters

Estimate Orientation Parameters

Using Historical_Imagery_GP_Tools (2)

Run EstimateCOG → Input KHIP table
 This populates COG field

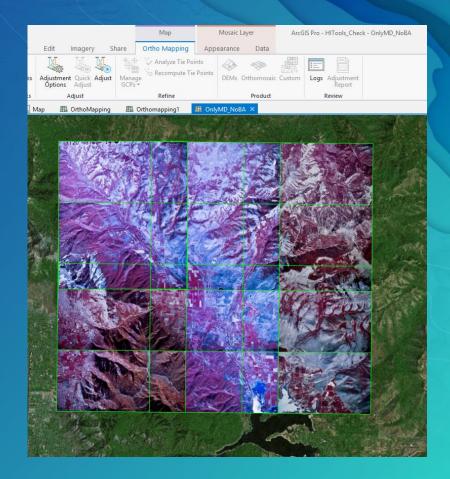
Historical Imagery.pyt
 Check Estimate Orientation Parameters
 Estimate Orientation Parameters
 EstimateCOG

- Run Check Estimate Orientation Parameters
 - This verifies required scheme is populated before beginning a lengthy run.
- Run Estimate Orientation Parameters
 - This builds single Frame & Camera Table required as input to Frame Camera Raster Type (workflow step 4)

Using Historical_Imagery_GP_Tools (3) Create Mosaic Dataset

- Use Frame Camera Raster Type
 - Input Frame+Camera table as input
- Measure amount of shrink to reduce footprints
- Shrink footprints using Calculate footprints by Geometry
- Set Mosaic Method = Closest to Center
- Create Overviews

(Workflow step 5 - optional) Block adjustment in ArcPro


- Calculate tie points between images
- Input ground control points
- Adjust with 1st Order Transform (Frame camera requires Desktop Advanced)

Advanced Workflow

- Create Frame Table as per Standard Workflow
- Use OrthoMapping
 - Block Adjustment
 - GPS AccracyLow
 - **DTM Generation**

Optionally (similar to standard)

- Publish as an Image Service
- Refine color correction *
- Generate seamlines *
- Generate Orthophotos *
- Create Tile Cache and publish to ArcGIS Online (or your portal)
- Create Derived Mosaic Dataset that Combines all

* Part of OrthoMapping workflow

Publishing

- As Image Services
 - Highest Image Quality (No data loss)
 - Provide Metadata
 - Access to All Overlapping data
 - Clip to Footprints

As Raster Tile Cache (Provides Static Backdrop)

- Generate in Desktop or Server
- Publish through Server or to ArcGIS Online

For More Details: <u>www.esriurl.com/imageryworkflows</u>

ArcGIS Features Plans Gallery Map Scene Help

🔍 Search 👗 Sign In

Image Management Tools Image Analysis Tools

ge Analysis Tools Image Use Tools

Manage Imagery

