

Design a Geodatabase

Rasu Muthurakku, Enterprise Solutions Architect / Consultant

Agenda Design a Geodatabase

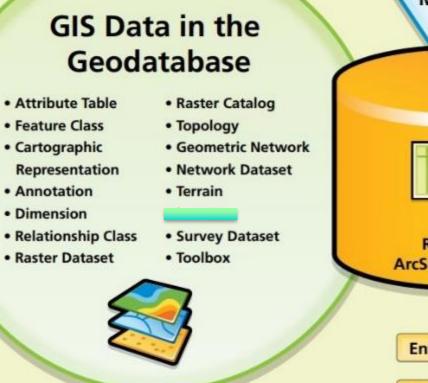
- Overview
- Key Factors
- Design
 - Recommendations

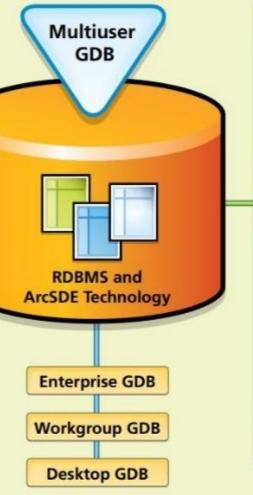
Overview

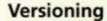
What is a Geodatabase (GDB)?

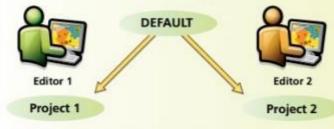
Collection of Geographic Datasets of Various Types Stored in:

- Common File System Folder
- Microsoft Access Database
- Multiuser Relational DBMS* / ArcSDE
 - Oracle
 - Microsoft SQL Server
 - PostgreSQL
 - Informix, IBM DB2
- Native Data Structure for ArcGIS
- Primary Data Format Used for Editing and Data Management
- **Comprehensive Approach to Modeling and Managing Spatial Data**


* DBMS – Database Management Syste

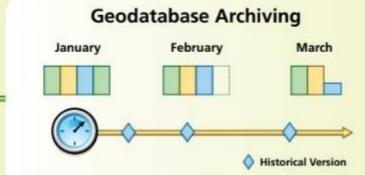

	Feature Dataset Contains spatially-related feature classes together with the topology and network objects that bind them. Feature classes in a feature dataset have spatial reference.
	Feature class A table with a shape field containing point, line, or polygon geometries for geographic features. Each row is a feature.
	Table A collection of rows, each containing the same fields. Feature classes are tables with shape feilds. Domain Defines a set or range of valid values for a field.
	Relationship class Associates objects from a feature class or table to objects in another feature class or table. Relationship classes can optionally have user-defined fields.
	Topology Integrity rules that define the behavior of geographically-integrated features.
	Geometric network Rules for managing connectivity among features in a set of feature classes.
	Survey dataset Contains survey measurements which are used to calculate coordinates linked to feature geometries in survey-aware feature classes.
	Raster dataset Contains rasters which represent continous geographic phenomena.
ita	Metadata document An XML document that can be associated with every dataset, commonly used in ArcIMS and other server applications.
	Geoprocessing tools A collection of dataflow and workflow processes for performing data managment, analysis, and modeling.


Functionality


Types of Geodatabases

Versioning is the framework that enables multiple users to access and edit the same data simultaneously and provides long transaction (i.e., database changes that span long periods of time) support.

Geodatabase Replication


Replica

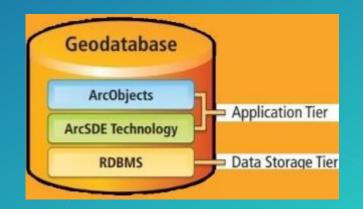
Synchronize

Replica

Child

Enables GIS data to be shared across two or more geodatabases. Data changes can be made in each geodatabase, then synchronized. Two-way, one-way, and checkout/check-in replication workflows are supported.

When enabled on a dataset, archiving captures any and all changes made to the dataset in the DEFAULT version of the multiuser geodatabase.


Key Factors

Expensive Rework

Prevention is Better Than Cure!

- Data Model Designs
 - Change in XY Tolerance
 - Multiple Projections
 - Objectid as Primary Key for Relationship Classes, etc.
- Data Conversion Specifications
 - Extra Vertices
 - Insufficient QA/QC
 - Large Feature Extent
 - Possibly by Data Conversion / Testing
 - Loading Static Raster Data Into GDB, etc.

Avoid Pitfalls!

Expensive Rework

Prevention is Better Than Cure!

- Hardware
 - Older Processor
 - Lesser Capacity, etc.
- Software
 - Version Selection including Patches
 - Utility Industry ArcGIS Desktop Version 10.2.1 (10.22)
 - ArcGIS Server Version Can Be Higher

Avoid Pitfalls!

Expensive Rework

Prevention is Better Than Cure!

- System Integration
 - Inefficient Interface Design
 - Version Difference for Each Version
 - Data Sharing with Other Systems Takes Hours, If not Days!
 - Synchronization Frequency
 - etc.

Avoid Pitfalls!

Performance and Scalability

Risks

- Workflow
 - Number of Outstanding Versions,
 - Versioning Levels
 - etc.

Maintenance

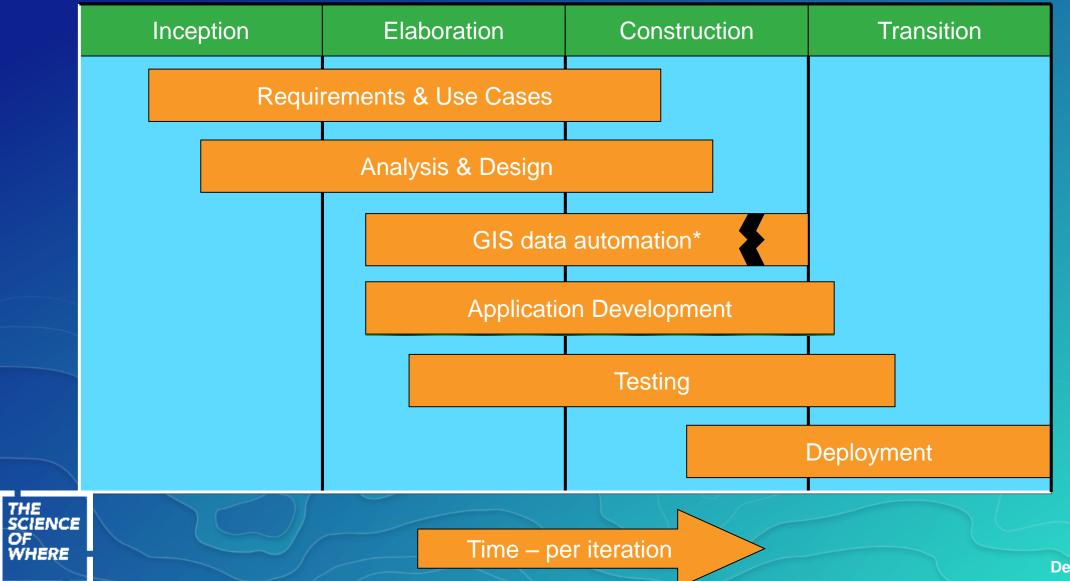
- Compact and Compress FGDB
- Total Delta Table Records,
- GDB Maintenance
- etc.

DEGREE=> 7, CASCADE=: SQL> select sum(num_re	R_SCHEMA_STATS ('ARCFM', estimate_percent=>100, >TRUE, No_Invalidate=>false); ows) as Total_A_Table_Rows from dba_tables in (select 'A' registration_id from sde.table_registry);
TOTAL_A_TABLE_ROWS	
	ows) as Total_D_Table_Rows from dba_tables in (select 'D' registration_id from sde.table_registry);

Separate Myths from Evidence Based Facts!

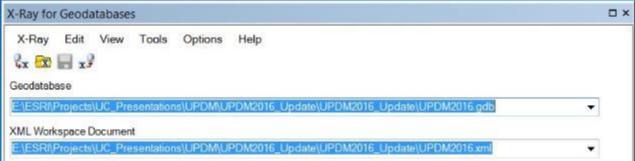
Intrigue Challenges!

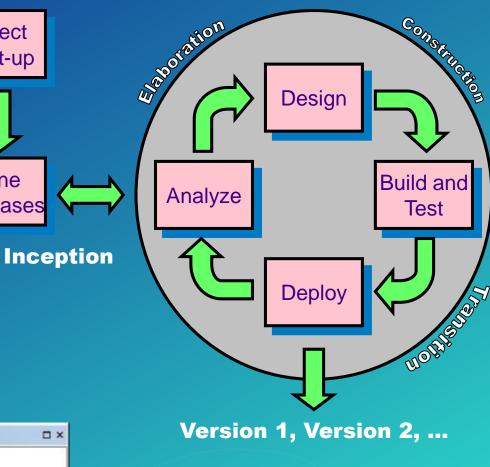
- Key Inputs
 - User / Business Groups
 - Functional and Non-Functional Requirements
 - Application Designs
 - etc.
- Need a Dedicated / Assigned ArcSDE Administrator


Talk to the Right People to Get the Right Information!

Design

Geodatabase Design - Phases




Geodatabase Design – Process

- Identify and Characterize Each Thematic Layer
- Develop Geodatabase Elements and Properties
- Define the Data Capture Procedures and Responsibilities
- Test, Refine and Document the Design

WHERE

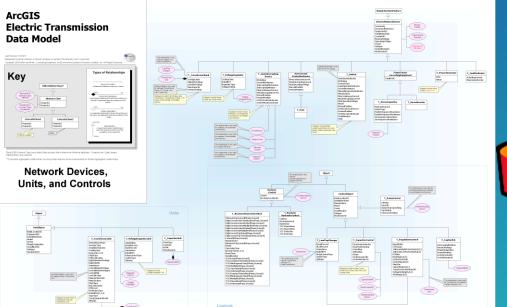
- X-Ray, Microsoft Visio and Geodatabase Diagrammer Tool
- Agile (Incremental) Vs Waterfall (Sequential) Methods
 Agile Works Better!

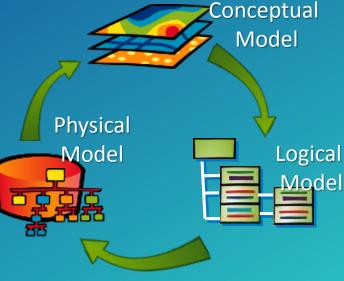
Project Start-up

Define

Jse Case

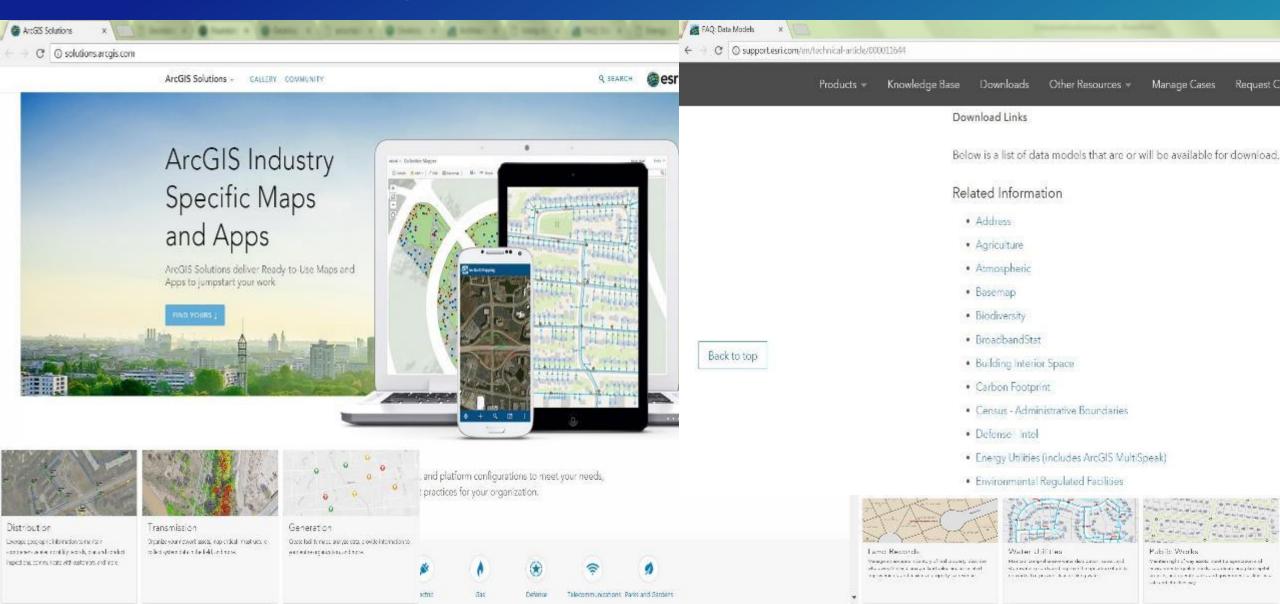
Geodatabase Design – Data Modeling


Conceptual Design


- Identify Business Requirements
- Identify Thematic Layers
- Identify Required Applications
- Leverage Data Model Templates
- Document

Logical Design

- Define Tabular Database Structure
- Define Relationships
- Determine Spatial Properties
- <u>Doc</u>ument



Physical Design

- **Create and Implement Model Design**
- Generate Physical Schema in the RDBMS / FGDB
- **Testing and Validation**
- Document

Geodatabase Design – ArcGIS Data Models

Geodatabase Design – Key Considerations

Poor Design = Slow Performance and Bugs

- Empty Feature Classes / Columns Forever
- Redundant/Duplicate Columns / Domains, etc.
- Missing / In-Correct Domains and Aliases for Fields
- Column / Domain Names and Field Lengths
 - >10 Characters in Field Names
 - Length of Text/NCLOB 256 or 1,073,741,822
 - Choice of Field Type
 - Short Integer
 - Long Integer
 - Float

THE SCIENCE

WHERE

- Double.

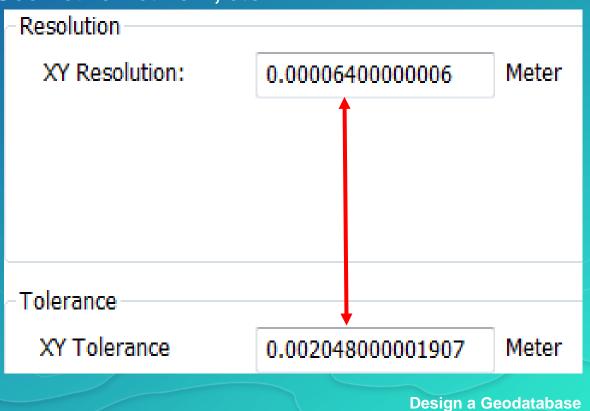
Selection of Precision and Scale

Define Not Null Fields

Alias	CustomerName	
Allow NULL values	Yes	
Default ∀alue		
Domain		
Length	1073741822	

Geodatabase Design – Key Considerations

Poor Design = Slow Performance and Bugs


Change in XY Tolerance

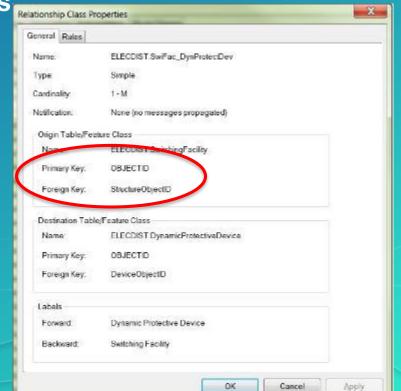
THE SCIENCE

WHERE

- Default = 10x Times of XY Resolution
- Introduces Complexity (#NIM090335) for Geometric Network, etc.
- Impacts Performance

	minimum distance between coordinates before they are XY tolerance is used when evaluating relationships
between features.	
0.001	Meter
	1.5162920
Z Tolerance	
100.0	
M Tolerance	
0.001	Unknown Units
Reset To Default	About spatial reference properties
Agcept default resoluti	on and domain extent (recommended)

Geodatabase Design – Key Considerations


Poor Design = Slow Performance and Bugs

THE

SCIENCE

WHERE

- No Attributed Relationship Classes for Empty Tables!
- Use Many to Many Relationship Classes Only When Necessary
- Don't Use Objectid as Primary Key for Relationship Classes
 - Unexpected Replication Behavior
 - Additional Processing During Synchronization

Geodatabase Design – Best Practices

- Leverage the Existing ArcGIS Data Models
 - Drop the Un-Necessary Feature Classes, Columns, etc. (Normalization)
 - Possibly Split the Feature Classes Pertaining to Different Scale Levels
 - Test, Refine and Tune the Data Models

Justify Every Single Geodatabase Element!

Geodatabase Design – Best Practices

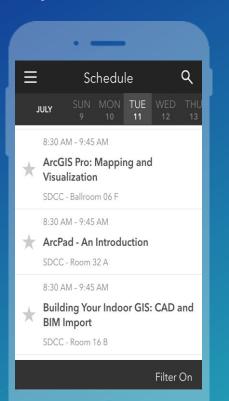
- Select Single Coordinate System for the Geodatabase
 - On the Fly Projection is Expensive
 - No Support for Geometric Network Editing
- Create Feature Datasets or Databases for Different LOB (Line of Businesses)
 - Depends on Size, Access, Usage and Maintenance
 - Larger Companies Generally Require a Separate Landbase GDB

Geodatabase Design – Recommendations

- Review the Labeling Requirements Ahead of Time
 - For Multi-Field Complex Labeling
 - Add/Calculate a New Field and Auto Update
 - Convert Labels to Annotations
- Analyze Requirements and Choose Proper Annotation Reference Scale
- Reduce Number of Annotation Classes within an Annotation Feature Class
- Add Attribute Indexes for Where Clauses
 - Label Expression
 - **Definition Queries**
 - **Application Design**

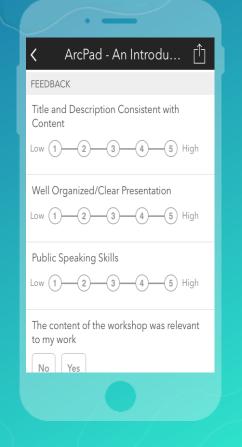
Indexes	Subtypes	Feature Extent	Relationships	Annotation Classes	Annotation
Annotation	Classes:				
CGC Default				New	
Job LoadBrea	k			Delete	
Size				Rename	u]
	. Incontraction				_
Label Field	expressi	on>	*	<u>Expression</u>	10.7

Questions and Answers


Contact Info: Rasu Muthurakku rasu@esri.com

Thank you for Attending. Please Take Our Survey on the **Esri Events App!**

Download the Esri Events app and find your event



Select the session you attended

Scroll down to find the survey . _____ ſŊ ArcPad - An Introduction SDCC - Room 32 A Add Reminder TIME 🛨 Jul 11, 8:30 AM - 9:45 AM SDCC - Room 32 A SDCC DESCRIPTION This session will provide an overview of ArcPad, Esri's software for mobile GIS and field mapping, with an emphasis on the new

Complete Answers and Select "Submit"

Thanks

