# Putting UAS to the Test for Substation Construction, Monitoring, and Operations



BOUNDLESS ENERGY"





BOUNDLESS ENERGY"

Joe Moore Designer Prin American Electric Power jlmoore@aep.com 614.933.2195



Daniel Michalec, GISP, PMP Geospatial Program Director | Energy Woolpert daniel.michalec@woolpert.com 614.596.7663



#### **Overview**

- Introductions
- AEP Station Standards pilot project; Why UAS?
- Brief UAS overview
- Logistics
  - Pre-acquisition
  - Acquisition
  - Post-processing
- Limitations of traditional 2D datasets
- Unlocking 3D
  - Change detection, construction monitoring
  - Next steps
- · Lessons learned
- Data demonstration
- · Q&A







- First co the US receive exemp UAS m
- Survey
- Extense experied manner platford sensor





BOUNDLESS ENERGY"

- 5.4M Customers in 11 states
- 40K+ mi electricity transmission network - largest in the nation
- 26K megawatts of generating capacity







- First company in the US to receive FAA exemption for UAS mapping
- Survey history
- Extensive experience with manned aerial platforms and sensors







#### **AEP Station Standards: UAS Case Study**

- Station Standards
- Substation construction projects:
  - Span months
  - Complex
  - Expensive
- Traditional monitoring:
  - Reporting
  - · Site visits
- Traditional concerns:
  - Alignment
  - Timing
  - Position
- Can UAS help?





#### Constraints

- Construction is very paper intensive task
- Schedules, reports, planning, and progress are all very subjective
- Delay, liability, and overscheduling are often problems
- Project milestones and cash flows are hard to track

**IMAGE NOT RELEASABLE** 



#### Mitigations

- Construction progress visualization (Short Term)
- Validating accuracy of equipment placement to design and reporting variances automatically (Long Term)
- Tracking major construction milestones automatically for updated cash flow (Short Term)
- As-build model (Long Term)



#### **Benefits**

- Improve transparency
- Improve efficiency
- Improve scheduling
- Reduce delays, liability, and overscheduling
- Improve updating cash flow



#### **UAS Overview**

- Pre-planning / Control
- Acquisition
- Post-processing
- Dataset creation
  - Images
  - Orthoimage
  - · Autocorrelated 3D point cloud
  - Surface
  - Image/textured mesh
- "Typical" area of interest
- "Typical" site infrastructure
- But.....







### **UAS Overview** Pre-planning / Control Acquisition Post-processing Dataset creation

# ...Electric Substation is NOT your "typical" environment

**Energized environment** 

PPE

Close quarters

cers of concurrent mall site

oo's gery

Limits of o

Active construction

Liability / Insurance

Control / PIDs

Step back a bit...



# ctric Substation T your "typical" nvironment

PPE

ons projects
ont projects
ont projects
ont projects

Active construction

Control / PIDs

Step back a bit...



















# Pre-planning

- Insurance concerns
  - Draft WO submittal
  - Liability \$\$ limit
  - Success!!!
- Landowner notification
  - Door hangers
  - Specific language
- Deconfliction policy
- Risk / Safety Mitigation\*\*
  - FAA
  - Staff credentials
  - Situational awareness
  - JSA/JHA
  - Device limitations
  - Weather concerns

IMAGE NOT RELEASABLE

IMAGE NOT RELEASABLE

IMAGE NOT RELEASABLE

















# Acquisition

- Survey control
  - · a MUST
- Electrical interference
- Onsite staff notification
- Approach
  - Altitude
  - Pre-programmed vs. manual
- Battery life
- · Flight time
- Heat





# Data Creation / Monitoring

- Datasets
  - Frames
  - Orthoimage
  - 3D Colorized Point Clouds
  - Image/textured mesh
- Orthoimagery for complex infrastructure
- Obscured control
- Accuracies:
  - x/y is simple
  - · z is more complicated
- NOISE confidence in change detection and monitoring

... need good data to make good decisions







## **Imagery**

- Individual frames
  - Great resolution
  - Challenging to manage
- Single site-wide image
  - Limited by site size/shape
  - Radial displacement
- Orthoimage
  - Artifacts impact analysis
- Horizontal Accuracy: +/- ~0.25 ft

- Utilization
  - Visual inspection
  - Image comparison
  - Measurement
- Automation is tough in 2D Proviously imaged based





















### **3D Colorized Point Cloud**

- Flight planning provides for substantial image overlap
- Software processing creates
   3D autocorrelated datasets
- Datasets:
  - Image/textured mesh
  - 3D point cloud (.las/.laz)
- Horizontal Accuracy: +/ ~0.25 ft
- Initial Vertical Accuracy:
   +/- ~2.5 ft
- Vertical Accuracy: +/ ~0.25 ft
- Utilization
  - Visual inspection
  - 3D Measurement
  - Comparison to model/design
     automate change detection



















### **Change Detection**

- Limitations in 2D imagery
  - Frame-based
  - Difficult to compare to other datasets
- Focus on 3D point cloud
  - "Spatial geometry" for comparison
  - Comparison to other point clouds
  - Comparison to 3D models
- ACCURACY DETERMINATION
  - What's noise?
  - What's actual change?
  - Accuracy statement:
    - x/y: ~0.25 ft
    - z: ~0.25 ft











































# **Next Steps**

- Refinement of change detection
- Automation of detection
  - Between point clouds
  - Against models
- Object identification
- Comparison to model/parts

### Why?

- · Compare to 4D schedule
- Check alignment, orientation, clearances, prefab measurements
- Effective way to understand change remotely
- Visual "gut check" cannot be faked and unlikely to be misunderstood

### Lessons Learned

- Risk mitigation is crucial
  - Safety
  - Liability
- Repetitive acquisition can be challenging
  - "noise" on the project site
  - Light conditions
- Creation of imagery is easy
- Creation of ACCURATE imagery is more challenging
- Creation of ACCURATE 3D data is even more challenging
- BUT.. accuracy or an understanding of limitations is needed to ensure successful change detection
- How to best fit UAS data into workflows?



# Questions?



BOUNDLESS ENERGY"

#### Thanks!

- Aaron Lawrence
- Andria Shaman
- Ethan Schreuder



ARCHITECTURE | ENGINEERING | GEOSPATIAL

Daniel Michalec, GISP, PMP Geospatial Program Director | Energy Woolpert daniel.michalec@woolpert.com 614.596.7663 Joe Moore Designer Prin American Electric Power jlmoore@aep.com 614.933,2195 Xuan Wu, PE Engineer Sr American Electric Power xwu@aep.com 614.933.2665