Putting UAS to the Test for Substation Construction, Monitoring, and Operations

Xuan Wu, PE
Engineer Sr
American Electric Power
xwu@aep.com
614.933.2665

Joe Moore
Designer Prin
American Electric Power
jlmoore@aep.com
614.933.2195

Daniel Michalec, GISP, PMP
Geospatial Program Director | Energy Woolpert
daniel.michalec@woolpert.com
614.596.7663
Overview

- Introductions
- AEP Station Standards pilot project; Why UAS?
- Brief UAS overview
- Logistics
 - Pre-acquisition
 - Acquisition
 - Post-processing
- Limitations of traditional 2D datasets
- Unlocking 3D
 - Change detection, construction monitoring
 - Next steps
- Lessons learned
- Data demonstration
- Q&A
- 5.4M Customers in 11 states
- 40K+ mi electricity transmission network - largest in the nation
- 26K megawatts of generating capacity
• First company in the US to receive FAA exemption for UAS mapping
• Survey history
• Extensive experience with manned aerial platforms and sensors
AEP Station Standards: UAS Case Study

- Station Standards
- Substation construction projects:
 - Span months
 - Complex
 - Expensive
- Traditional monitoring:
 - Reporting
 - Site visits
- Traditional concerns:
 - Alignment
 - Timing
 - Position
- Can UAS help?
Constraints
- Construction is very paper intensive task
- Schedules, reports, planning, and progress are all very subjective
- Delay, liability, and overscheduling are often problems
- Project milestones and cash flows are hard to track

Mitigations
- Construction progress visualization *(Short Term)*
- Validating accuracy of equipment placement to design and reporting variances automatically *(Long Term)*
- Tracking major construction milestones automatically for updated cash flow *(Short Term)*
- As-build model *(Long Term)*

Benefits
- Improve transparency
- Improve efficiency
- Improve scheduling
- Reduce delays, liability, and overscheduling
- Improve updating cash flow
UAS Overview

- Pre-planning / Control
- Acquisition
- Post-processing
- Dataset creation
 - Images
 - Orthoimage
 - Autocorrelated 3D point cloud
 - Surface
 - Image/textured mesh
- "Typical" area of interest
- "Typical" site infrastructure
- But.....
...Electric Substation is NOT your "typical" environment

Energized environment

Complex infrastructure

Close quarters

Small site

Limits of orthoimage

Active construction

100's of Concurrent Projects

6,000+ Stations

Liability / Insurance

Control / PID's

Step back a bit...
Active construction

Control / PIDs

Step back a bit...
Pre-planning

- **Insurance concerns**
 - Draft WO submittal
 - Liability $$ limit
 - Success!!!

- **Landowner notification**
 - Door hangers
 - Specific language

- **Deconfliction policy**

- **Risk / Safety Mitigation**
 - FAA
 - Staff credentials
 - Situational awareness
 - JSA/JHA
 - Device limitations
 - Weather concerns
IMAGE NOT RELEASABLE
IMAGE NOT RELEASEABLE
Acquisition

- Survey control
 - a MUST
- Electrical interference
- Onsite staff notification
- Approach
 - Altitude
 - Pre-programmed vs. manual
- Battery life
- Flight time
- Heat
Data Creation / Monitoring

- Datasets
 - Frames
 - Orthoimage
 - 3D Colorized Point Clouds
 - Image/textured mesh
- Orthoimagery for complex infrastructure
- Obscured control
- Accuracies:
 - x/y is simple
 - z is more complicated
- NOISE - confidence in change detection and monitoring

... need good data to make good decisions
Imagery

- Individual frames
 - Great resolution
 - Challenging to manage
- Single site-wide image
 - Limited by site size/shape
 - Radial displacement
- Orthoimage
 - Artifacts impact analysis
- Horizontal Accuracy: +/- ~0.25 ft

- Utilization
 - Visual inspection
 - Image comparison
 - Measurement
 - Automation is tough in 2D - only imaged based
3D Colorized Point Cloud

- Flight planning provides for substantial image overlap
- Software processing creates 3D autocorrelated datasets
- Datasets:
 - Image/textured mesh
 - 3D point cloud (.las/.laz)
- Horizontal Accuracy: +/- ~0.25 ft
- Initial Vertical Accuracy: +/- ~2.5 ft
- Vertical Accuracy: +/- ~0.25 ft

- Utilization
 - Visual inspection
 - 3D Measurement
 - Comparison to model/design
 - Automate change detection
Change Detection

- Limitations in 2D imagery
 - Frame-based
 - Difficult to compare to other datasets
- Focus on 3D point cloud
 - "Spatial geometry" for comparison
 - Comparison to other point clouds
 - Comparison to 3D models
- ACCURACY DETERMINATION
 - What's noise?
 - What's actual change?
 - Accuracy statement:
 - x/y: ~ 0.25 ft
 - z: ~ 0.25 ft
IMAGE NOT RELEASABLE
IMAGE NOT RELEASABLE
IMAGE NOT RELEASABLE
Next Steps

- Refinement of change detection
- Automation of detection
 - Between point clouds
 - Against models
- Object identification
- Comparison to model/parts

Why?

- Compare to 4D schedule
- Check alignment, orientation, clearances, prefab measurements
- Effective way to understand change remotely
- Visual "gut check" - cannot be faked and unlikely to be misunderstood
Lessons Learned

- Risk mitigation is crucial
 - Safety
 - Liability
- Repetitive acquisition can be challenging
 - "noise" on the project site
 - Light conditions
- Creation of imagery is easy
- Creation of ACCURATE imagery is more challenging
- Creation of ACCURATE 3D data is even more challenging
- BUT.. accuracy or an understanding of limitations is needed to ensure successful change detection
- How to best fit UAS data into workflows?
Questions?

Thanks!

- Aaron Lawrence
- Andria Shaman
- Ethan Schreuder