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What are
Spatial
Statistics?




Spatial Statistics are a set of
exploratory techniques for
describing and modeling
spatial distributions,
patterns, processes, and
relationships.
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Spreadsheets
Data or Information?




Maps
Data or Information?
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When you look at a spreadsheet...




You ask for more

N

e Mean

e Standard Deviations

e Min and Max



Same goes for maps!







Means and Medians

— summarizing spatial distributions

Machine Learning

clustering methods




Means and Medians

summarizing spatial distributions



Central Feature

identities the most centrally located feature
in a point, line, or polygon feature class
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Mean Center

identifies the geographic center (or the
center of concentration) for a set of features
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Median Center

identifies the location that minimizes overall
Fuclidean distance to the features in a
dataset
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Mean vs Median?
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Demo
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Linear Directional Mean

identities the mean direction, length, and
geographic center for a set of lines









Directional Distribution

(Standard Deviational Ellipse)

creates standard deviational ellipses to
summarize the spatial characteristics of

geograph

dispersion,

ic features: central tendency,

and directional trends
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Similarity Search

identifies which candidate features are most
similar or most dissimilar to one or more
input features based on feature attributes
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Z-transform:
(x-x)/SD




Population = 14,159

standardize
attributes

% Uninsured = .26

Distance (km)= 535.89



Population = -.7932

standardize
attributes

% Uninsured = 3.8462

Distance (km) = .6433



Population = -.7932

standardize . % Uninsured = 3.8462

attributes

Distance (km) = .6433



subtract
candidate
from target

standardize
attributes

square
differences

sum
squares



Dengue
Fever
Risk in
Kenya




clustering methods



Density-based Clustering

finds clusters based on feature locations
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Cluster 1
Cluster 2
Cluster 3
Cluster 4
Cluster 5

Noise



DBSCAN — defined distance

HDBSCAN - sers adjusting
OPTICS - multi-scale



DBSCAN — defined distance



DBSCAN — defined distance




DBSCAN — defined distance




DBSCAN — defined distance
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DBSCAN — defined distance
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HDBSCAN -seif adjusting



OPTICS — multi-scale



OPTICS — multi-scale



OPTICS — multi-scale




OPTICS — multi-scale

Reachability distance
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OPTICS — multi-scale




OPTICS — multi-scale
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DBSCAN HDBSCAN OPTICS
* Uses fixed « Uses range of « Uses neighbor
search distance search distances to create
distances to reachability plot
* Clusters of find clusters of
similar varying * Most flexibility for
densities densities fine tuning
* Fast  Data driven, * Can be
requires least computationally
user input intensive




Cluster 1
Cluster 2
Cluster 3
Cluster 4
Cluster 5

Noise



Multivariate Clustering

finds clusters based on feature attributes



| % Eligible
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% of Uninsured
with no High School

% of Uninsured
below 138 FPL

% of Uninsured
who are Latino




K Means




K Means

2 groups
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K Means

2 groups 3 groups
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K Means

3 groups 4 groups

2 groups




Eligible Uninsured Americans

% Below 138 FPL
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Spatially Constrained
Multivariate Clustering

finds clusters based on feature attributes
and proximity



WHATVE YOU BEEN UP TO?

DOING TONS OF
MATH FOR MY THESIS.

CAN YOU EXPLAN
IT LKE ITM FWE?

OH My GOD, WHERE
PRE?HJE FWB&ITEI'*"“
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https://xkcd.com/1364/



Minimum Spanning Tree



Minimum Spanning Tree




Minimum Spanning Tree




Minimum Spanning Tree




Minimum Spanning Tree

.




Minimum Spanning Tree

.







Crime in Chicago
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