Emergency Flow Restriction Device (EFRD)

Adequacy Evaluation

Joel Jensen, PIM Program Coordinator
Chevron Pipe Line Company (CPL)

Nathan Marx, Senior GIS Consultant
Eagle Information Mapping, Inc. (EIM)

Houston, Texas

April 4, 2006
Regulatory Overview

The U.S. DOT Hazardous Liquid Pipeline Integrity Management rule (CFR 195.452) requires operators to:

- Identify where pipeline releases could potentially affect **High Consequence Areas (HCAs)**.
- Meet prescriptive requirements for periodic **Inspection and Repair**.
- Conduct Risk Analyses to evaluate the need for additional **Preventive & Mitigative Measures**, to prevent and/or mitigate the impact of a release to HCAs.
- An **Emergency Flow Restriction Device (EFRD)** is a special class of Preventive & Mitigative Measure identified in the regulation.
High Consequence Areas (HCAs)

For Hazardous Liquid Pipelines...

- High Population Areas.
- Other Populated Areas.
- Unusually Sensitive Areas:
 - Ecological
 - Drinking Water
- Commercially Navigable Waterways.
What is an EFRD?

An **Emergency Flow Restriction Device (EFRD)** is defined as either a **Check Valve** or **Remote Control Valve**.

A **Check Valve** automatically prevents backflow when the pipeline shuts down.

A **Manual Gate Valve** can be converted into a **Remote Control Valve** by adding a **Motor Operator** and **SCADA Controls** to enable timely remote closure (e.g. from a pipeline control center).
EFRD Adequacy Evaluation

Chevron Pipe Line Company (CPL) uses various GIS toolsets to evaluate the adequacy of Emergency Flow Restriction Devices (EFRDs).
EFRD Adequacy Evaluation

Chevron Pipe Line Company (CPL) uses various GIS toolsets to evaluate the adequacy of Emergency Flow Restriction Devices (EFRDs).

Again, EFRDs are valves and remote controls which mitigate the impact of a catastrophic rupture to HCAs.
Release Modeling

In order to measure the impact of a release to HCAs, the release volume and it’s transport over land and water must be modeled relative to HCAs.

CPL uses a GIS based process for Pipeline Release, Overland Flow and Hydrographic Transport (PROFHT) modeling.
Release Modeling

In order to measure the impact of a release to HCAs, the release volume and it’s transport over land and water must be modeled relative to HCAs.

CPL uses a GIS based process for Pipeline Release, Overland Flow and Hydrographic Transport (PROFHT) modeling.

An understanding of pipeline drain down volume is a critical input to this release modeling process.
Modeling Drain Down Volume

- Release Locations
 - Model release every 100 ft.

- Failure Mechanism & Size
 - Third Party damage – full rupture.
 - Worst Case Discharge (WCD).

- Operating Conditions
 - Flow Rate.
 - Leak Detection & Response.

- Design Factors
 - Pipe diameter.
 - Valve type & spacing.
Overland Flow, Hydrographic Transport

Channelized Flow
- Based on “Rain Drop” Tool.
 - Flow accumulation + flow direction ➔ least cost path.
 - Product fluxes include evaporation, infiltration, adhesion

Lateral Spread
- Stepwise processing of “flat” areas.
 - Least cost flow surface to define time/distance intervals.
 - Tracks flow velocity, flow depth, product loss

Hydrographic Transport
- Relies on NHD dataset to determine stream network.
 - Product is transported downstream or as a radial surface plume in lakes
 - Transport distance is governed by stream velocity, product loss, and remaining response time
After the release modeling is complete, an **EFRD Advisor** application uses GIS to provide an interactive viewing and modeling environment to facilitate the evaluation of potential EFRD improvements.
After the release modeling is complete, an EFRD Advisor application uses GIS to provide an interactive viewing and modeling environment to facilitate the evaluation of potential EFRD improvements.

This application employs an EFRD Index as a measure of change in consequence relative to a baseline analysis.
Understanding Release Consequence

Before attempting to gauge the effect of placing a new valve, or reducing closure time on an existing valve, we must understand the **consequence** (negative impact) of a potential release along the pipeline.

Different releases will have different consequences, which will depend on the following factors:

- **Release volume.**
- **Number and types of HCAs impacted:**
 - Volume in;
 - Time of impact relative to Emergency Response time.
- **Product type:**
 - Some products have more severe impacts on certain HCA types than others.
Understanding A Consequence Index

A **Consequence Index** is a dimensionless quantity expressing *relative* consequence of releases within the context of a line segment.

A Consequence Index is:
- Internally consistent.
- Reproducible.
- Inherently arbitrary (e.g. parameters are adjustable).

A Consequence Index is **not**:
- Quantitative.
- Suitable for calculating absolute consequences.

A Consequence Index for a given scenario is calculated relative to a baseline analysis.
The EFRD (Consequence) Index

The **EFRD Index** is a **Consequence Index**

- The size of the release and associated HCA Impacts represent *relative* losses or costs.
 - Impact to Human Health & Safety.
 - Property Damage.
 - Environmental Damage.
 - Product Loss / Cleanup & Remediation Costs.
The EFRD (Consequence) Index Formula

\[
EFRD_{\text{Index}} = \left(1 + \sum_{\text{HCA}\text{Hits}} \left(\frac{\text{Rem}_\text{Vol} \times \text{Rem}_\text{Time}}{\text{Drain}_\text{Vol} \times \text{Resp}_\text{Time}} \times \text{HCA}_{\text{wt}} \right)_{\text{max}} \right) \times \frac{\text{Drain}_\text{Vol}}{\text{Avg}_{\text{Drain}_\text{Vol}}} \times \frac{\text{EFRD}_\text{Vol}}{\text{Drain}_\text{Vol}} \times \text{Threat}_\text{Index}
\]

Where:

- HCA Hit = Intersection of Rupture Point, Overland Flow Path or Polygon, Hydrographic Trace Path or Plume with an HCA.
- Rem_Vol = Remaining release volume introduced into an HCA.
- Drain_Vol = Total release volume at Rupture point for baseline scenario.
- Rem_Time = Time remaining to Resp_Time when an HCA is hit.
- Resp_Time = Emergency response time.
- HCAwt = Weight factors applied by HCA and Commodity type.
- Avg_Drain_Vol = Average release volume for all modeled rupture points on the line segment being analyzed. Can optionally be replaced by a user specified threshold drain volume to allow cross segment comparison.
- EFRD_Vol = Release volume calculated at the rupture point for the EFRD scenario under consideration.
- Threat_Index = optional estimate of relative threats along the pipeline.
Perform Pipeline Release, Overland Flow and Hydrographic Transport (PROFHT) Analysis.

- **Baseline Drain Down Analysis.**
 - Considers only existing Check Valves

- **Baseline EFRD Consequence Index.**
 - Calculated from HCA Intersections.
 - Uses weighting factors for:
 - HCA Type.
 - Commodity Type.
Perform Operational Drain Down Analysis
- Considers existing Remotely Operated Valves and Manual Block Valves
- Calculate Operational EFRD Index based on Reduced Drain Volumes.

Evaluate Effectiveness of Existing EFRDs
- Compare EFRD Index between Baseline and Operational Scenario.
 - Expect to see Significant Reductions.
EFRD Adequacy Evaluation Process

Identify and Prioritize Potential EFRD Evaluation Segments

- Where EFRD Index remains high.
- Where there is significant potential for Drain Volume reduction

Identify Potential Valve Installations or Conversions

- Valve Conversions should be considered first.
- Consider site access and potential power sources
Example EFRD Adequacy Evaluation

- River valley location near a populated area and other HCAs
- The Operational EFRD Index remains high
- Significant potential for further drain volume reduction
Example EFRD Adequacy Evaluation

Valve Site A: Existing manual valve, 2-hour closure.

- Convert to Remote Control Valve (EFRD), 10-minute closure.
Example EFRD Adequacy Evaluation

Valve Site B: Existing manual valve, 2-hour closure.
- Convert to Remote Control Valve (EFRD), 10-minute closure.
Example EFRD Adequacy Evaluation

Tabular Reports

<table>
<thead>
<tr>
<th>Line Name</th>
<th>Example Products Line</th>
</tr>
</thead>
<tbody>
<tr>
<td>Route_ID</td>
<td>999</td>
</tr>
<tr>
<td>Route Name</td>
<td>Point A – Point B</td>
</tr>
<tr>
<td>Segment Name</td>
<td>Example EFRD Evaluation Segment</td>
</tr>
<tr>
<td>From_Stn</td>
<td>1370379.64</td>
</tr>
<tr>
<td>From_Meas</td>
<td>442451.14</td>
</tr>
<tr>
<td>To_Stn</td>
<td>1422058.7</td>
</tr>
<tr>
<td>To_Meas</td>
<td>494509.80</td>
</tr>
<tr>
<td>Length</td>
<td>52058.80</td>
</tr>
<tr>
<td>Max Baseline Drain_Vol</td>
<td>7624</td>
</tr>
<tr>
<td>Avg Baseline Drain_Vol</td>
<td>6541</td>
</tr>
<tr>
<td>Max Operational Drain_Vol</td>
<td>7824</td>
</tr>
<tr>
<td>Avg Operational Drain_Vol</td>
<td>4283</td>
</tr>
<tr>
<td>Max Proposed Drain_Vol</td>
<td>2130</td>
</tr>
<tr>
<td>Avg Proposed Drain_Vol</td>
<td>1104</td>
</tr>
<tr>
<td>Max Baseline EFRD_Index</td>
<td>88.3289</td>
</tr>
<tr>
<td>Avg Baseline EFRD_Index</td>
<td>25.7053</td>
</tr>
<tr>
<td>Max Operational EFRD_Index</td>
<td>88.3289</td>
</tr>
<tr>
<td>Avg Operational EFRD_Index</td>
<td>19.0208</td>
</tr>
<tr>
<td>Max Proposed EFRD_Index</td>
<td>11.4451</td>
</tr>
<tr>
<td>Avg Proposed EFRD_Index</td>
<td>3.7977</td>
</tr>
<tr>
<td>Avg Baseline EFRD_Class</td>
<td>3.0</td>
</tr>
<tr>
<td>Avg Operational EFRD_Class</td>
<td>2.3</td>
</tr>
<tr>
<td>Avg Proposed EFRD_Class</td>
<td>0.6</td>
</tr>
</tbody>
</table>
‘EFRD’ Adequacy Evaluation

Questions?