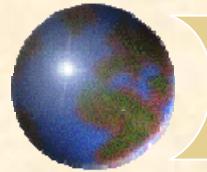


How Accurate Is Your Data?


2007 SERUG
Jacksonville, Florida
May 2-4, 2007

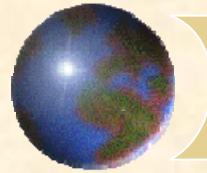
Panda Consulting

9089 N. Military Trail, Suite 21, Palm Beach Gardens, FL 33410

Copyright: Panda Consulting 2007

How Accurate Is Your Data?

- “Good Enough”
- “Pretty Good”
- We often don’t know until we compare it to another data set.
- Then the question is, “Which data set is the accurate one?”



Panda Consulting

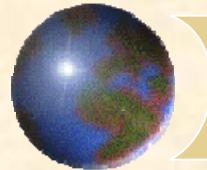
9089 N. Military Trail, Suite 21 Palm Beach Gardens, FL 33410

Copyright: Panda Consulting 2007

SERUG 2007

Value of Data

- Value is less related to the cost of producing the data and more on its fitness for a particular analysis.
- Data quality significantly affects confidence in analysis results.
- Unknown data quality leads to tentative decisions and increased liability.



Panda Consulting

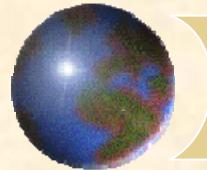
9089 N. Military Trail, Suite 21 Palm Beach Gardens, FL 33410

Copyright: Panda Consulting 2007

SERUG 2007

The 5 Components of Data Quality

- Positional Accuracy
- Attribute Accuracy
- Logical Consistency
- Completeness
- Lineage



Panda Consulting

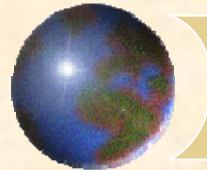
9089 N. Military Trail, Suite 21 Palm Beach Gardens, FL 33410

Copyright: Panda Consulting 2007

SERUG 2007

Positional Accuracy

- How closely the coordinate description of features compare to their actual location.
 - Absolute Accuracy
 - Relative Accuracy



Panda Consulting

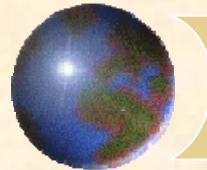
9089 N. Military Trail, Suite 21 Palm Beach Gardens, FL 33410

Copyright: Panda Consulting 2007

SERUG 2007

Attribute Accuracy

- How thoroughly and correctly the features in the data set are described.



Panda Consulting

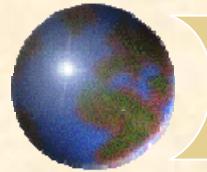
9089 N. Military Trail, Suite 21 Palm Beach Gardens, FL 33410

Copyright: Panda Consulting 2007

SERUG 2007

Logical Consistency

- The extent to which geometric problems and mapping inconsistencies exist within a data set.



Panda Consulting

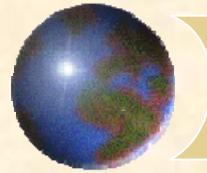
9089 N. Military Trail, Suite 21 Palm Beach Gardens, FL 33410

Copyright: Panda Consulting 2007

SERUG 2007

Completeness

- The decisions that determine what is contained in the data set.



Panda Consulting

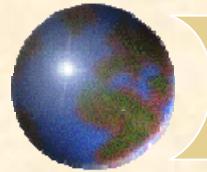
9089 N. Military Trail, Suite 21 Palm Beach Gardens, FL 33410

Copyright: Panda Consulting 2007

SERUG 2007

Lineage

- What sources are used to construct the data set and what steps are taken to process the data.



Panda Consulting

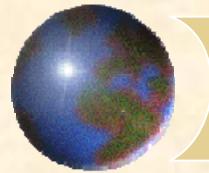
9089 N. Military Trail, Suite 21 Palm Beach Gardens, FL 33410

Copyright: Panda Consulting 2007

SERUG 2007

Positional Accuracy

- This presentation only deals with Positional Accuracy.



Panda Consulting

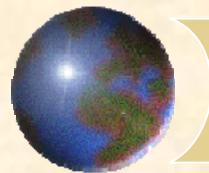
9089 N. Military Trail, Suite 21 Palm Beach Gardens, FL 33410

Copyright: Panda Consulting 2007

SERUG 2007

Need for a Standardized Test

- We must find a way to test the data.
- The test must be:
 - Standardized.
 - Repeatable.
 - Objective.
 - Clearly state the limits of the data.

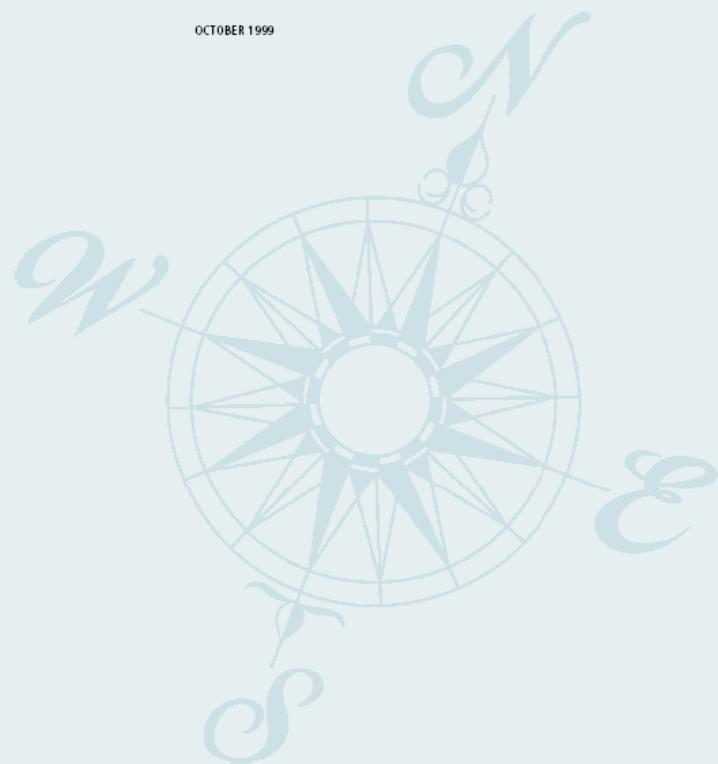


Panda Consulting

9089 N. Military Trail, Suite 21 Palm Beach Gardens, FL 33410

Copyright: Panda Consulting 2007

SERUG 2007

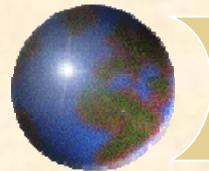


NSSDA

Positional Accuracy Handbook

Using the National Standard for Spatial Data Accuracy
to measure and report geographic data quality

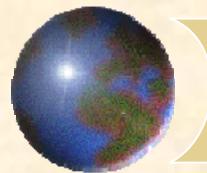
OCTOBER 1999



Panda Consulting

9089 N. Military Trail, Suite 21 Palm Beach Gardens, FL 33410

Copyright: Panda Consulting 2007

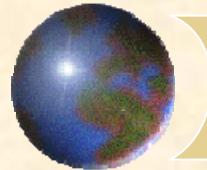

SERUG 2007

- National Standard for Spatial Data Accuracy

- Developed in 1998
- Issued by the Federal Geographic Data Committee (FGDC)
- More useful with digital data than NMAS
 - NMAS defines accuracy relative to the map publication scale.

Benefits of the NSSDA

- Identifies a well-defined statistic used to describe test results.
- Describes a method to test spatial data for positional accuracy.
- Provides a common language to report accuracy that makes it easier to evaluate the “fitness for use” of a data set.



Panda Consulting

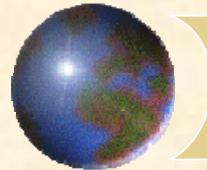
9089 N. Military Trail, Suite 21 Palm Beach Gardens, FL 33410

Copyright: Panda Consulting 2007

SERUG 2007

Steps for Applying the NSSDA

- Determine which test to use.
- Select a set of test points.
- Select an independent data set.
- Collect measurements.
- Calculate a positional accuracy statistic.
- Prepare accuracy statement.
- Include accuracy statement in metadata.



Panda Consulting

9089 N. Military Trail, Suite 21 Palm Beach Gardens, FL 33410

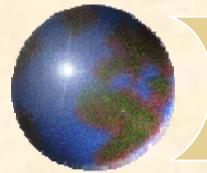
Copyright: Panda Consulting 2007

SERUG 2007

Determine Which Test to Use

- Horizontal
- Vertical

(Each has a different formula)



Panda Consulting

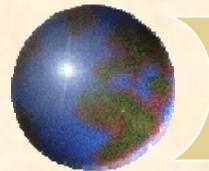
9089 N. Military Trail, Suite 21 Palm Beach Gardens, FL 33410

Copyright: Panda Consulting 2007

SERUG 2007

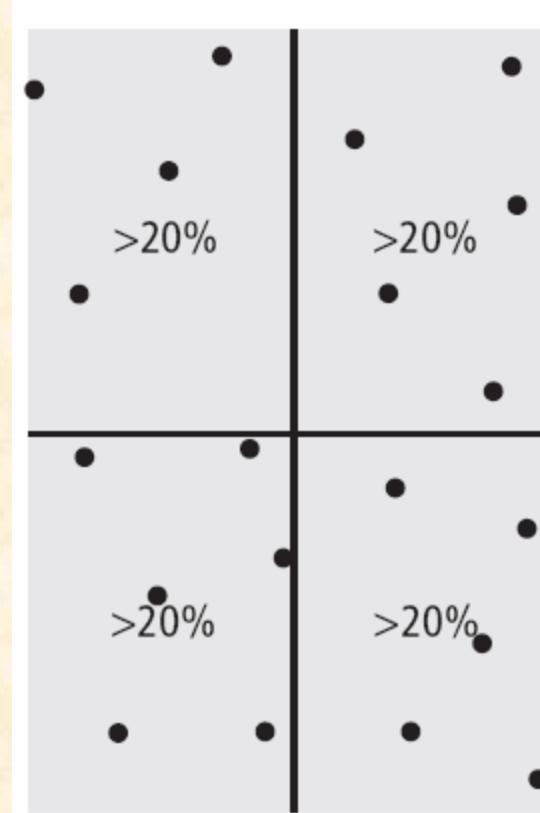
Step 1 - Select Test Points

- Points that will be tested.
- Points must be:
 - Well-defined.
 - Easy to find and measure.
 - Exist in both data sets.
 - Well distributed in data sets.
 - At least 20 points are required to develop a statistically significant accuracy evaluation.

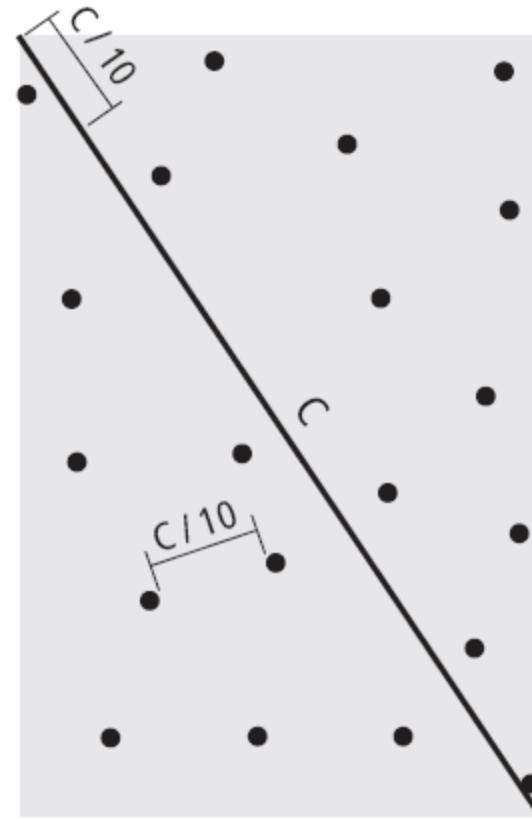


Panda Consulting

9089 N. Military Trail, Suite 21 Palm Beach Gardens, FL 33410


Copyright: Panda Consulting 2007

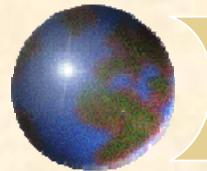
SERUG 2007



Ideal Distribution of Test Points

Distribution

Spacing



Panda Consulting

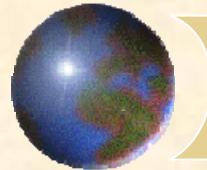
9089 N. Military Trail, Suite 21 Palm Beach Gardens, FL 33410

Copyright: Panda Consulting 2007

SERUG 2007

Step 2 - Select Independent Data Set

- Also called the control set.
- The most critical step.
- Data set must be acquired separately from test set.
- Should be 3 times more accurate than the expected accuracy of the test data set.
- If non-existent, data points may be collected and used.



Panda Consulting

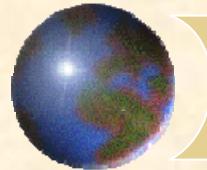
9089 N. Military Trail, Suite 21 Palm Beach Gardens, FL 33410

Copyright: Panda Consulting 2007

SERUG 2007

Choosing the Best Data Set

- Since the process compares coordinate values between two data sets, you must ensure that:
 - The data sets are not dependent or derived from one another.
 - The independent data set is accurate.
 - (PLSS/LABINS)
 - Digital Ortho Photography
- Are you testing for absolute or relative accuracy?



Panda Consulting

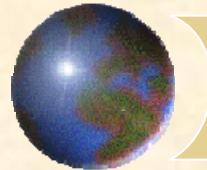
9089 N. Military Trail, Suite 21 Palm Beach Gardens, FL 33410

Copyright: Panda Consulting 2007

SERUG 2007

Step 3 -Record Measurements

- Collect test point coordinate values from both sets.
- Be aware of errors associated with collection techniques.
 - COGO
 - Digitizing from aerials
 - Building from other data
- Be aware of scale at which you acquire coordinates.
- Snap!



Panda Consulting

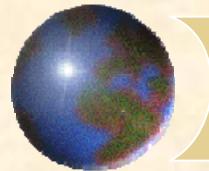
9089 N. Military Trail, Suite 21 Palm Beach Gardens, FL 33410

Copyright: Panda Consulting 2007

SERUG 2007

Step 4 -Calculate the Statistic

- To develop the NSSDA, 3 statistics are used:
 - The sum of the set of squared differences in coordinate values
 - The average of the sum
 - The root mean square error
 - (The square root of the average)



Panda Consulting

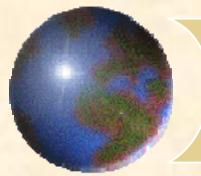
9089 N. Military Trail, Suite 21 Palm Beach Gardens, FL 33410

Copyright: Panda Consulting 2007

SERUG 2007

Step 5 - Calculate the NSSDA

- Multiply the root mean square error (RMSE) of observations by a value that represents the standard error of the mean at the 95 percent confidence level.
- 1.7308 for horizontal accuracy



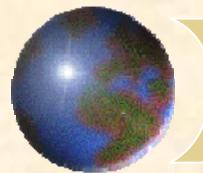
Panda Consulting

9089 N. Military Trail, Suite 21 Palm Beach Gardens, FL 33410

Copyright: Panda Consulting 2007

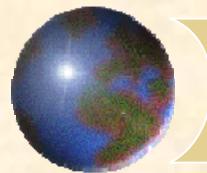
SERUG 2007

Standard Horizontal Accuracy Worksheet


Panda Consulting

9089 N. Military Trail, Suite 21 Palm Beach Gardens, FL 33410

Copyright: Panda Consulting 2007


SFRUG 2007

Legend for Worksheet

Column	Title	Content
A	Point number	Designator of test point
B	Point description	Description of test point
C	x (independent)	x coordinate of point from independent data set
D	x (test)	x coordinate of point from test data set
E	diff in x	x (independent) - x (test)
F	(diff in x) ²	Squared difference in x = (x (independent) - x (test)) ²
G	y (independent)	y coordinate of point from independent data set
H	y (test)	y coordinate of point from test data set
I	diff in y	y (independent) - y (test)
J	(diff in y) ²	Squared difference in y = (y (independent) - y (test)) ²
K	(diff in x) ² + (diff in y) ²	Squared difference in x plus squared difference in y = (error radius) ²
	sum	$\sum [(\text{diff in x})^2 + (\text{diff in y})^2]$
	average	sum / number of points
	RMSE, NSSDA	Root Mean Square Error (radial) = average ^{1/2} National Standard for Spatial Data Accuracy statistic = 1.7308 * RMSE,

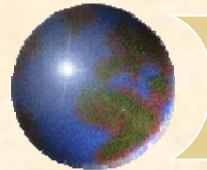


What Is RMSE?

- Calculating the average error in location.

Sample Completed Worksheet

Point#	Point description	x (Independent)	x (test)	diff ln x	(diff ln x) ²	y (Independent)	y (test)	diff ln y	(diff ln y) ²	(diff ln x) ² + (diff ln y) ²
10751	nw & lot line (m&b)	408062.125	408061.700	0.4	0.2	166599.106	166598.974	0.1	0.0	0.2
1100	nw & lot line (platted)	400363.263	400360.433	2.6	0.0	165103.426	165103.496	-0.1	0.0	0.0
11730	nw & lot line (m&b)	401133.630	401133.382	0.3	0.1	153041.796	153041.626	0.0	0.0	0.1
1382	nw & lot line (platted)	482016.265	482016.057	0.2	0.0	168767.766	168767.674	-0.1	0.0	0.1
1397	nw & lot line (platted)	470559.679	470558.959	0.9	0.8	166326.072	166325.627	0.2	0.1	0.9
1400	nw & lot line (m&b)	492361.275	492361.352	-0.1	0.0	166191.526	166191.305	0.2	0.0	0.1
2901	nw & lot line (m&b)	457165.200	457165.039	0.2	0.0	159005.809	159005.616	0.0	0.0	0.0
8180	nw & lot line (platted)	481795.422	481795.068	0.4	0.2	172502.941	172503.182	-0.2	0.0	0.2
7100	nw & lot line (platted)	488652.141	488651.230	0.9	0.8	162901.920	162901.132	0.8	0.8	1.5
lot_1_2	nw & lot line (platted)	451423.044	451422.194	0.6	0.7	173240.966	173240.547	0.3	0.1	0.6
11840	nw & lot line (platted)	491613.968	491613.949	0.0	0.0	147706.306	147706.645	-0.3	0.1	0.1
3980	nw & lot line (platted)	483622.111	483622.116	0.0	0.0	153178.462	153178.429	0.1	0.0	0.0
4041	nw & lot line (platted)	479920.567	479920.492	0.1	0.0	152711.577	152711.656	0.0	0.0	0.0
5120	nw & lot line (platted)	475454.065	475453.940	0.1	0.0	147133.005	147133.256	-0.2	0.0	0.0
5549	nw & lot line (platted)	480407.975	480407.927	0.0	0.0	144460.696	144460.912	-0.2	0.0	0.0
6301	nw & lot line (platted)	483062.352	483062.426	-0.1	0.0	143447.557	143447.761	-0.2	0.0	0.0
6578	nw & lot line (platted)	483813.337	483813.443	-0.1	0.0	155599.943	155700.107	-0.2	0.0	0.0
6609	nw & lot line (platted)	472135.343	472135.103	0.2	0.1	153298.676	153298.464	0.1	0.0	0.1
9036	nw & lot line (platted)	470399.063	470399.053	0.0	0.0	157767.656	157767.940	-0.1	0.0	0.0
9376	nw & lot line (platted)	478840.112	478839.711	0.4	0.2	146370.597	146370.616	-0.2	0.0	0.2
4788	nw & lot line (platted)	485173.302	485173.120	0.2	0.0	146306.262	146306.520	-0.3	0.1	0.1
					sum		12.5			
					average		0.6			
					RMSD		0.5			
					NSSDA		1.3			



Panda Consulting

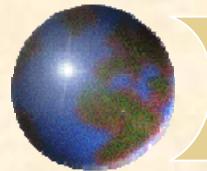
9089 N. Military Trail, Suite 21 Palm Beach Gardens, FL 33410

Copyright: Panda Consulting 2007

SERUG 2007

Step 6 - Prepare Statement

- One of two reporting methods can be used:
 - Tested _____ (feet) horizontal accuracy at 95% confidence level.
 - Compiled to meet _____ (feet) horizontal accuracy at 95% confidence level.



Panda Consulting

9089 N. Military Trail, Suite 21 Palm Beach Gardens, FL 33410

Copyright: Panda Consulting 2007

SERUG 2007

Include Accuracy Statement in Metadata

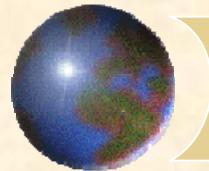
● Sample text:

Digitized features outside areas of high vertical relief: tested 23 feet horizontal accuracy at the 95% confidence level using the NSSDA.

Digitized features within areas of high vertical relief (such as major river valleys): tested 120 feet horizontal accuracy by other testing procedures.

For a complete report of the testing procedures used, contact Washington County Surveyor's Office as noted in Section 6, Distribution Information.

All other features are generated by coordinate geometry and are based on a framework of accurately located PLSS corner positions used with public information of record. Computed positions of parcel boundaries are not based on individual field surveys. Although tests of randomly selected points for comparison may show high accuracy between field and parcel map content, variations between boundary monumentation and legal descriptions of record can and do exist. Caution is necessary when using land boundary data shown. Contact the Washington County Surveyor's Office for more information.



Panda Consulting

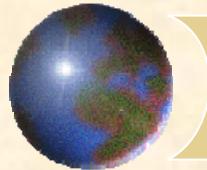
9089 N. Military Trail, Suite 21 Palm Beach Gardens, FL 33410

Copyright: Panda Consulting 2007

SERUG 2007

Issues

- Comparative in nature
 - Problem of positional accuracy versus relative accuracy.
 - Data sets can be accurate to one another but positionally inaccurate.
- Only tests single data sets.
- Many data sets are derivative in nature and are dependent upon others for spatial lineage.



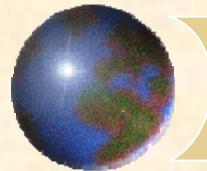
Panda Consulting

9089 N. Military Trail, Suite 21 Palm Beach Gardens, FL 33410

Copyright: Panda Consulting 2007

SERUG 2007

- ➊ Error is usually not uniform across entire data set.
 - ▣ Due to higher concentration of “control points,” suburban and urban areas are often more accurate than rural areas.
 - ▣ It is better to perform several tests and state the differences than to conduct a single test and develop NSSDA to entire data set.



Panda Consulting

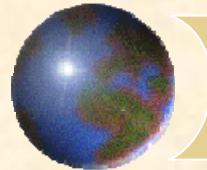
9089 N. Military Trail, Suite 21 Palm Beach Gardens, FL 33410

Copyright: Panda Consulting 2007

SERUG 2007

Positional Dependency

- The location of any single parcel is dependent upon the features used to locate that parcel.
 - Proven and unproven PLSS corners
 - Other parcels
 - Street centerlines
 - Subdivision boundaries
- In a parcel data set, a single incorrectly located PLSS section corner can impact all parcels within a half-mile radius.
 - The 4 adjoining sections formed from the location of that corner can be impacted.



Panda Consulting

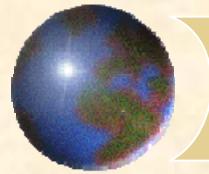
9089 N. Military Trail, Suite 21 Palm Beach Gardens, FL 33410

Copyright: Panda Consulting 2007

SERUG 2007

Data Fabrics

- Often, data is built with implicit dependencies.
- Also called “topology rules”



Panda Consulting

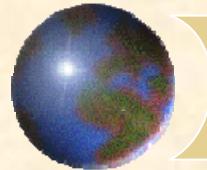
9089 N. Military Trail, Suite 21 Palm Beach Gardens, FL 33410

Copyright: Panda Consulting 2007

SERUG 2007

Therefore...

- It is rare that single data sets can be spatially corrected without impacting many other data sets.
- Often, complete re-engineering projects must be undertaken.



Panda Consulting

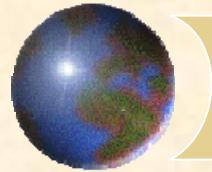
9089 N. Military Trail, Suite 21 Palm Beach Gardens, FL 33410

Copyright: Panda Consulting 2007

SERUG 2007

Re-engineering Projects

- ➊ When planning re-engineering projects:
 - ▣ Recognize different accuracy needs
 - Urban
 - Suburban
 - Rural
 - ▣ Ease in acquiring control points.
 - ▣ Mapping versus survey control points.
 - ▣ Take a long term approach.
 - (Tom Sawyer approach)



Panda Consulting

9089 N. Military Trail, Suite 21 Palm Beach Gardens, FL 33410

Copyright: Panda Consulting 2007

SERUG 2007

Questions?

Frank J. Conkling

frank@pandaconsulting.com

561-691-3277

Panda Consulting

9089 N. Military Trail, Suite 21 Palm Beach Gardens, FL 33410

Copyright: Panda Consulting 2007

SERUG 2007