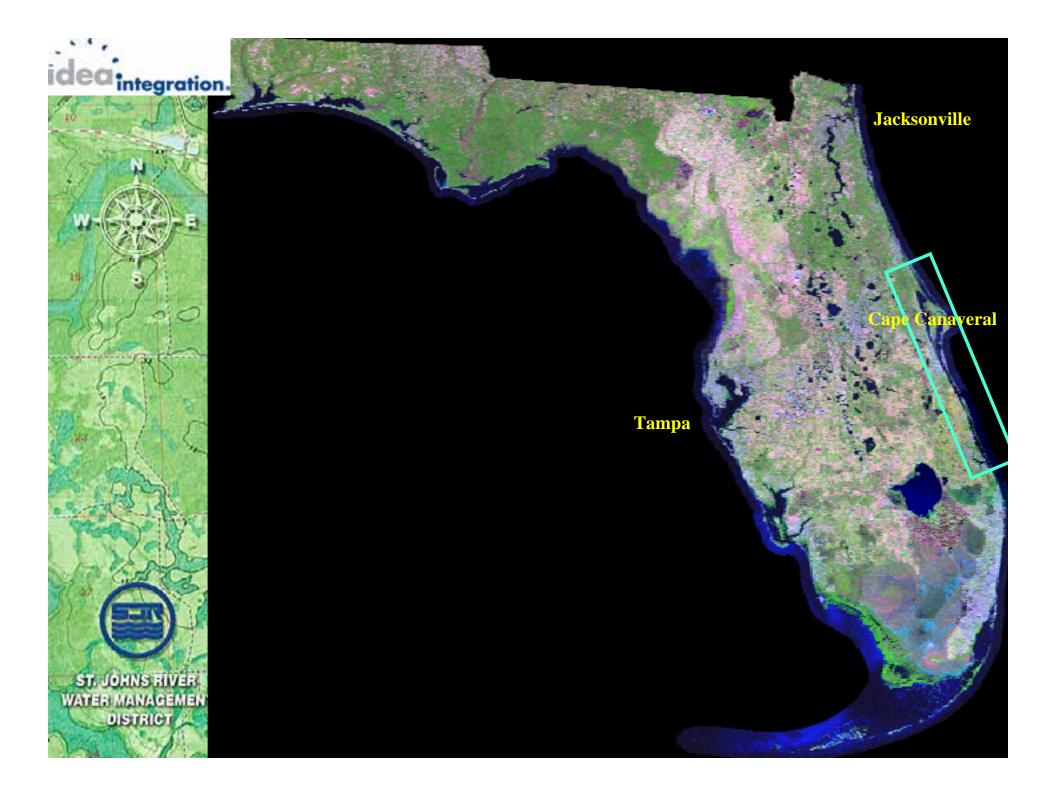


Spatial Differences in Seagrass Mapping by Different Photo Interpreters

Samuel Rajasekhar

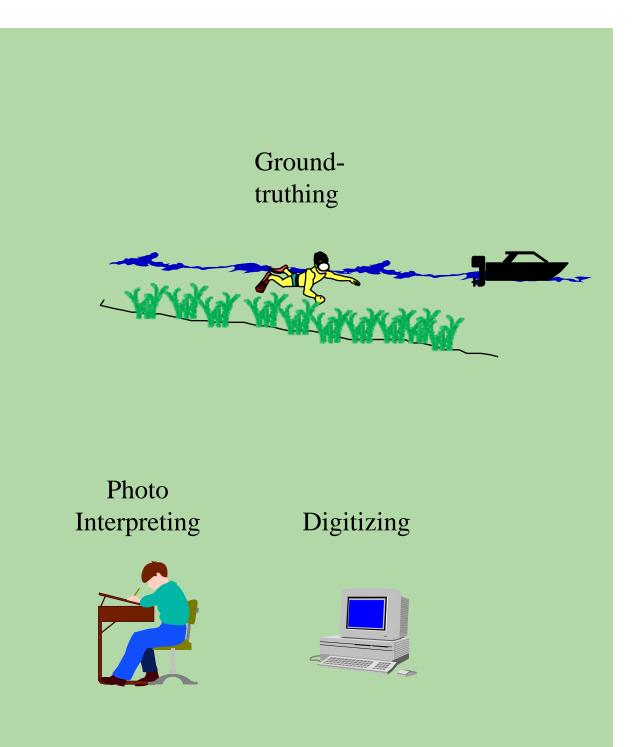
Idea Integration / St. Johns River Water Management District

Kristen Kaufman (Staff Scientist)


SouthWest Florida Water Management District

Dr. Robert Virnstein Seagrass Ecosystem Analysts

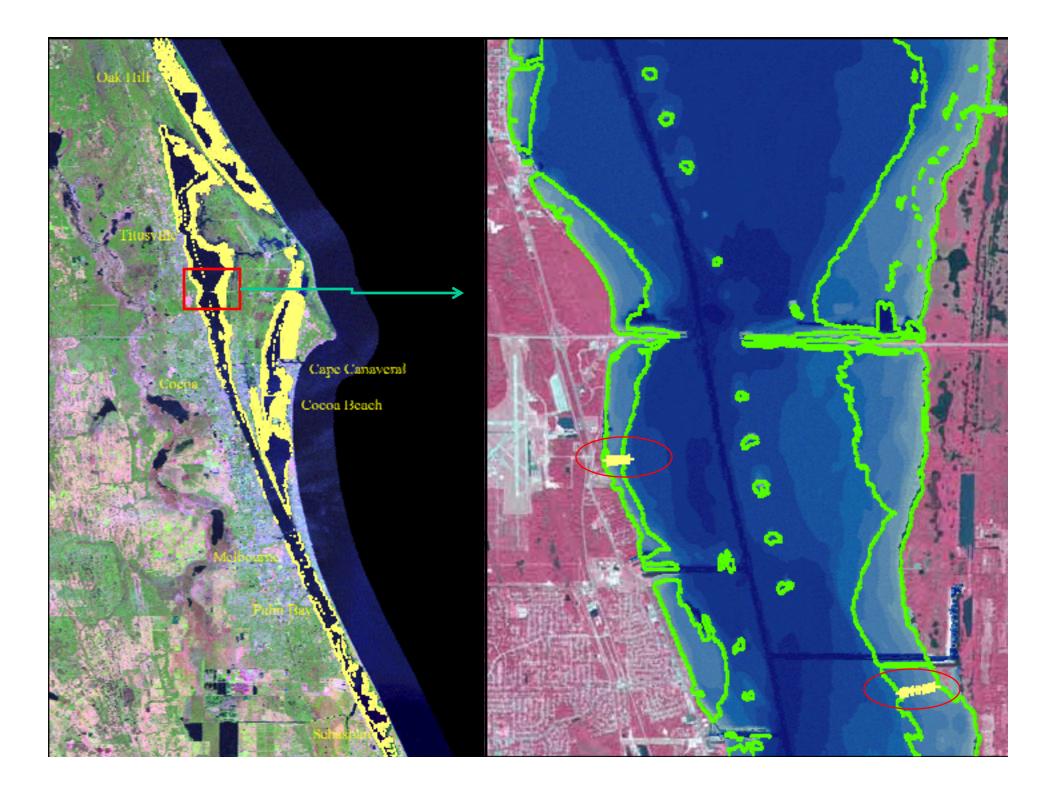


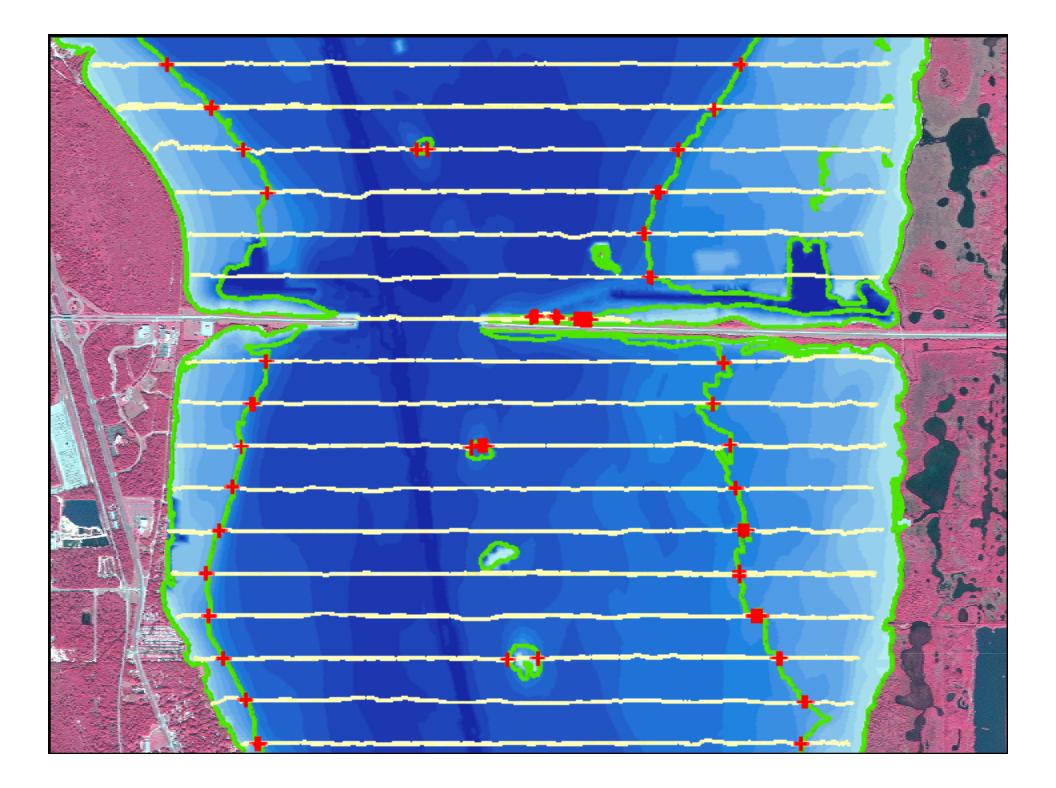


Importance of Seagrasses

- A primary objective of the Indian River Lagoon (IRL) Surface Water Improvement and Management (SWIM) Plan is to protect and restore seagrasses, a key resource.
- Seagrasses are a good indicator of the overall health of the lagoon ecosystem.
- Seagrass coverage statewide has generally declined since 1943.
- The IRL SWIM Plan directs the South Florida and St. Johns River Water Management Districts to map seagrasses in the Indian River Lagoon at 2-3 year intervals.

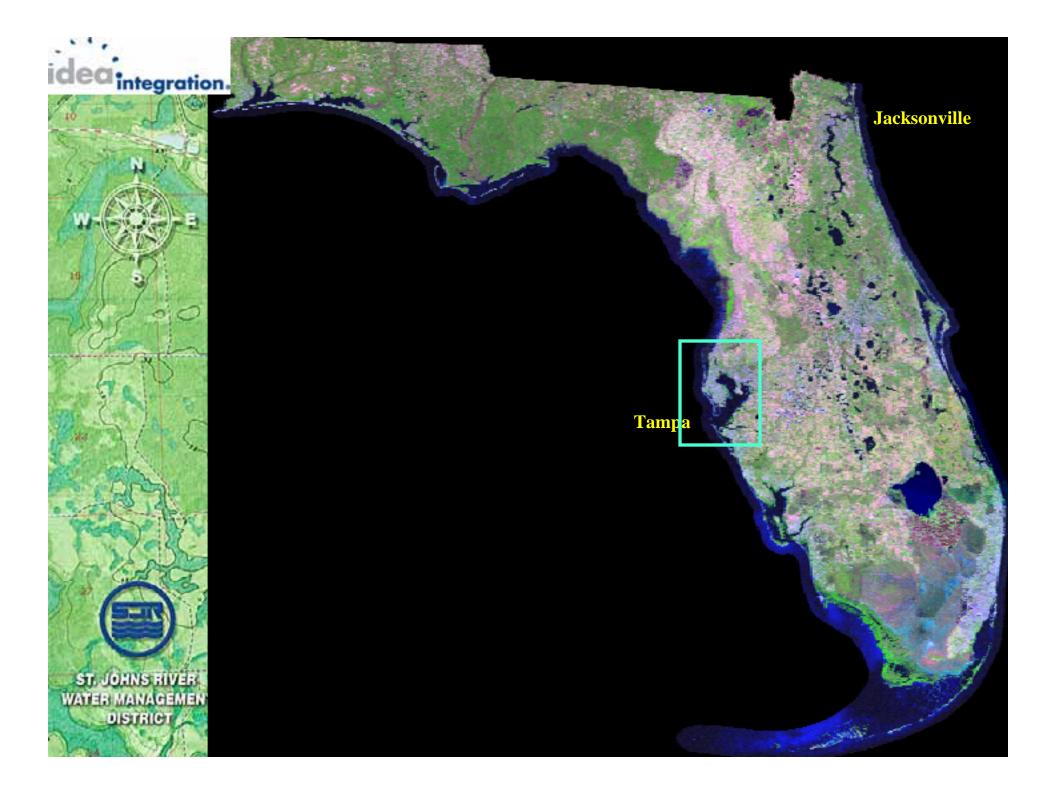
'Setting Seagrass Depth, Coverage, and Light Targets for the Indian River Lagoon System, Florida' Estuaries Vol. 28, No. 6, 9. 923-935 December 2005





Why Measure the Deep Edge?

- Expansion of seagrass into deeper water indicates improvement in water quality & clarity.
- Light limitation is commonly the principal factor limiting the depth distribution of seagrasses.
- Seagrass depth and light targets are the basis for developing water quality criteria
- Deep edge of seagrass beds are measured bi-annually by some 90 well distributed transects. Each transect starts from shore and advances by 10 meter increments towards the middle of the lagoon till there is no seagrass.
- More extensively deep edge is measured from GIS maps.
 This is where the power of GIS analysis comes into play.



The SWFWMD Exercise

- In 2006, 2 photo-interpreters (PI) A & B, each interpreted and digitized seagrass polygons from 5 aerial photographs 3 different times.
- The imagery was captured by Digital Mapping Camera (DMC) for St. Joseph Sound / Clearwater Harbor, Tampa Bay area.
- This exercise was managed by Kristen Kaufman. SWFWMD's primary objective was to measure the differences in acreage between PIs.
- Although PIs can duplicate with a fair amount of accuracy the area of a seagrass beds, the spatial placement of those boundary lines, especially the deep edge can vary. Reason: depth

St. Joseph Schatpset 3-58

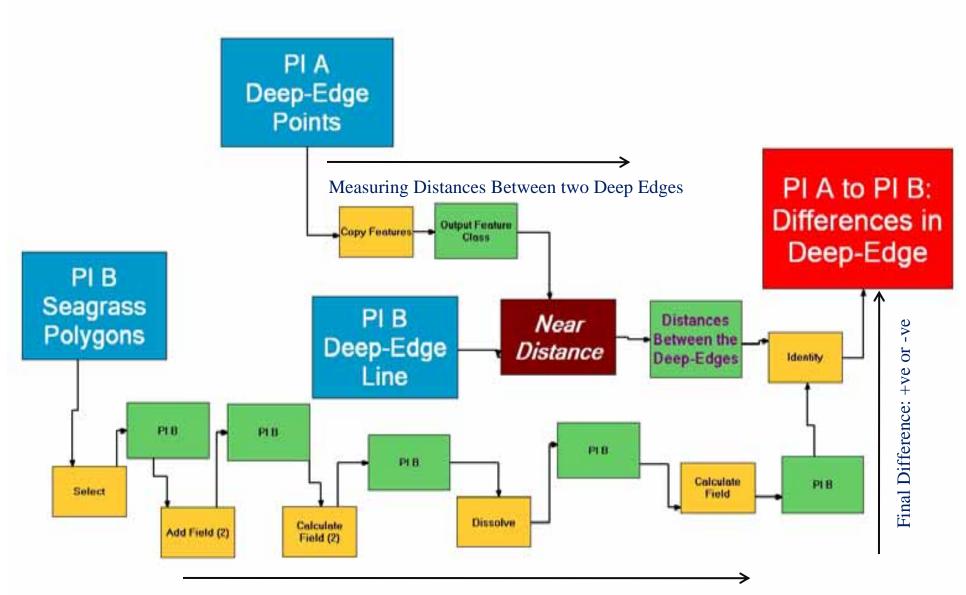
Clearwater PHotoset 3-50

Photoset 2-21

Photoset 10-61 Tampa Bay

Photo Set	PI B	PI A			
3-58	seagrass acreage	seagrass acreage			
set 1	536.18	513.63			
set 2	537.59	516.75			
set 3	512.43	511.43			
Overall Variance Vari	ance in Area calcul	adions			
Photo Set	PI B	PI A			
3-50	seagrass acreage	seagrass acreage			
set 1	176.93	174.55			
set 2	174.02	179.52			
set 3	176.8	171.11			
Overall Variance:		1.48%			
Photo Set	PI B	PI A			
2-21	seagrass acreage	seagrass acreage			
set 1	224.78	224.34			
set 2	225.86	230.05			
set 3	229.17	218.14			
Overall Variance:	2.34%				
Photo Set	PI B	PI A			
10-66	seagrass acreage	seagrass acreage			
set 1	96.46	101.71			
set 2	95.75	112.31			
set 3	95.39	106.99			
Overall Variance:		16.68%			

GIS Methods Utilized:


- ArcMap, ArcEdit, ArcCatalog (Tools & Spatial Model/s)
- * X-Tools (to Convert Deep Edge Lines to Equidistant Points)

Would be Extremely Time Consuming and Tedious to do so by Other Means with Very Low Accuracy.

✤ Although the Average of the Differences is a good Indicator of Accuracy, the +ve (Gains: Deeper) and -ve (Losses; Shallower)
Values lend the data to Statistical Analysis

Assigning +ve Values if the Difference is Towards the Deep End and -ve Vice versa

Average Differences in Meters

PI Photo Sets	10-66	2-21	3-50	3-58
PI A: 1 st to 2 nd Mapping	8.02	5.33	6.44	6.9
PI A: 2 nd to 3 rd Mapping	6.62	7.98	6.52	11.58
PI A: 1 st to 3 rd Mapping	10.2	7.44	8.51	10.93
PI B: 1 st to 2 nd Mapping	5.29	4.57	4.81	4.87
PI B: 2 nd to 3 rd Mapping	4.72	6.62	7.23	11.16
PI B: 1 st to 3 rd Mapping	3.62	7.36	7.32	9.95
PI A <-> PI B: 1 st to 1st Mapping	7.37	7.22	6.83	12.21
PI A <-> PI B: 2 nd to 2 nd Mapping	6.19	7.79	6.48	11.38
PI A <-> PI B: 3 rd to 3 rd Mapping	5.31	10.12	8.23	12.32

Statistical Analysis

- The Sign Test was employed to determine if differences within and between the PIs were significant
- *HO*: the median value of the distribution is *m* (generally *m* = 0), values larger (+) and smaller (-) than the median are equally likely.
 - When matched pairs are used, the probability of observing (A,B) is equal to that of observing (B,A) and the value of A-B has median value of 0.
- ✤ P value < 0.05 reject null hypothesis</p>

Sign Test (* Significant Difference)

Set 3_58	P Value for	P value for	P value for	Set 3 50	P Value for	P value for	P value for
	Pair 1 to 2	Pair 2 to 3	Pair 1 to 3		Pair 1 to 2	Pair 2 to 3	Pair 1 to 3
Photo Interpreter A	0.462	0.003 *	0.001 *	Photo Interpreter A	0.400	0.000 *	0.000 *
Photo Interpreter B	0.100	0.004 *	0.003 *	Photo Interpreter B	0.003 *	0.918	0.185
Set 3_58	P Value for Pair 1 to 1	P value for Pair 2 to 2	P Value for Pair 3 to 3	Set 3_50	P Value for Pair 1 to 1	P value for Pair 2 to 2	P Value for Pair 3 to 3
Photo Interpreter A & B	0.000 *	0.012 *	0.024 *	Photo Interpreter A & B	0.642	0.006	0.002 *
N / N / S /							
Set 10_66	P Value for Pair 1 to 2	P value for Pair 2 to 3	P value for Pair 1 to 3	Set 2_21	P Value for Pair 1 to 2	P value for Pair 2 to 3	P value for Pair 1 to 3
Photo Interpreter A	0.567	0.670	0.012 *	Photo Interpreter A	0.818	0.084	0.003 *
Photo Interpreter B	0.333	0.128	0.674	Photo Interpreter B	0.05	0.507	0.131
Set 10_66	P Value for Pair 1 to 1	P value for Pair 2 to 2	P Value for Pair 3 to 3	Set 2_21	P Value for Pair 1 to 1	P value for Pair 2 to 2	P Value for Pair 3 to 3
Photo Interpreter A & B	0.000 *	0.000 *	0.000 *	Photo Interpreter A & B	0.875	0.839	0.091

Conclusion/s

- Seagrass acreages do not differ much between the PIs.
 Gains & losses cancel each other while drawing the seagrass polygon boundaries. That is OK for SWFWMD where the biomass estimates are important.
- This exercise does not measure the accuracy of deep edge line placement, but only the bias between the PIs as well as the bias when repeated by the same PI.
- Deep Edge: average differences for photo sets ranged from 3.62 meters to 12.32 meters.
- Statistical tests show that there are significant difference between & within PIs for the deep edge line placement.

Recommendations

- If the slope is gentle, few meters difference in deep edge should not matter. If the slope is steep: even small changes can impact the estimates of % light reaching the bottom.
- ✤ Suggestion:
 - Conduct an exercise to field verify entire polygons using GPS during the time period when imagery is obtained. Then measure the error.
 - ✤ Try to avoid multiple PIs.
- IRL: no new mapping is done each time. Only change polygons are delineated. When changing or drawing a new deep edge employ meticulous use of signatures as well as ground truth.

Acknowledgements

- Jan Miller: Environmental Scientist III, SJRWMD for all the statistical analysis and suggestions.
- Lori Morris: Environmental Scientist IV, SJRWMD for guidance.
- Co-Authors: Bob & Kristen for initiating this GIS endeavor and the confidence they had in me.
- My employer Idea Integration and SJRWMD for continuing the contract.

Many Thanks to All and Any Questions/Comments/Suggestions ???