Using GIS to Analyze People's Behaviors in Hurricane Evacuation

Lixin Huang, GISP, E.I.

Advanced Transportation Engineering Consultants

Miami, FL

April 28, 2009

Using GIS to Analyze People's Behaviors in Hurricane Evacuation

- Introduction
- Data Preparation
- Model Development
- Model Results
- Conclusion

Introduction

- Hurricane Threat in Coastal Areas
- Evacuation One of the solutions
- Analysis of People's Behaviors Evacuation Distance
- Socio-economic and Demographic Data

Data Preparation

- Data Source: Hurricane Katrina Survey from NSF
- Variables Selection

	Variable Name	Variable Type	
Response Variable	Evacuation Distance	Quantitative	
Explanatory Variables	Age	Quantitative	
	Education Level	Categorical	
	Gender	Categorical	
	Household Size	Quantitative	
	Income	Categorical	
	Marital Status	Categorical	
	Own or Rent	Categorical	
	Race	Categorical	

• Three Types of Evacuation Destination

Evacuation Destination	Data Available	Assumption
Within Household's Neighborhood	N/A	Centroid of the Zip Code the Household is Located in
Out of Household's Neighborhood but Within Household's County	N/A	Centroid of the County the Household is Located in
Out of Household's County	Names of Destination City and State	Centroid of the City the Household evacuated to
	Names of Destination State	Centroid of the State the Household evacuated to

• Categorical Variables: Recode to dummy variables

Explanatory Variable: Income

Volue	Value Decemention		Dummy Variables				
Value	ie Description	Dum2	Dum3	Dum4	Dum5	Dum6	Dum7
1	UNDER \$10,000	0	0	0	0	0	0
2	\$10,000 - \$20,000	1	0	0	0	0	0
3	\$20,000 - \$30,000	0	1	0	0	0	0
4	\$30,000 - \$50,000	0	0	1	0	0	0
5	\$50,000 - \$80,000	0	0	0	1	0	0
6	OVER\$80,000	0	0	0	0	1	0
7	DON'T KNOW/NO RESPONSE	0	0	0	0	0	1

Model Development

- Ordinary Least Squares (OLS) Regression
- Geographically Weighted Regression (GWR)

- Ordinary Least Squares (OLS) Regression
 - Include Quantitative and Categorical Variables
 - Response Variable Transformation (Natural Logarithm)

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \cdots + \beta_{\eta} x_{\eta} + \varepsilon$$

Where:

y: Response Variable,

 η : Number of Explanatory Variables,

 β_n : Regression Coefficients,

 x_{η} : Explanatory Variables, and

 ε : Random Error Term / Residual.

• Response Variable Distribution (Before Transformation)

• Response Variable Distribution (After

- Geographically Weighted Regression (GWR)
 - Include Quantitative Variables: Age and Household Size
 - Exclude Categorical Variables to avoid local colinearity
 - Response Variable Transformation (Natural Logarithm)

Model Results

Ordinary Least Squares (OLS) Regression

Statistical Diagnostics	Value	Remarks
R-Squared	0.07	Very low global model performance
Adjusted R-Squared	0.01	Very low global model performance
Variance Inflation Factor (VIF)	1.02 ~ 4.04	< 7. No indication of variables redundancy
Joint Wald Statistic	0 (Probability)	Statistically significant model
Koenker (BP) Statistic	0.032 (Probability)	Statistically significant non-stationarity
The Jarque-Bera Statistic	0 (Probability)	Model misspecification
Moran's I Index for Standard Residual	0.06	No indication of spatial autocorrelation

Ordinary Least Squares (OLS) Regression

Ordinary Least Squares (OLS) Regression

Statistical Diagnostics	Value	Remarks
R-Squared	0.20	Low global model performance
Adjusted R-Squared	0.16	Low global model performance
Condition Number	12.02 ~ 19.75	< 30. Not indication of local colinearity
Local R-Squared	0.00 ~ 0.24	Low local model performance
Moran's I Index for Standard	0.02	No indication of spatial autocorrelation

Residual

Conclusion

- OLS Regression Model:
 - Model Misspecification
- GWR Model:
 - Regional Variation
 - Low Performance

Questions?