Winter Strawberry Production in West Central Florida, at what cost? A GIS Analysis of the relationship between sinkhole development, dry well complaints and groundwater pumping for frost-freeze protection

Mark D. Aurit, GISP
• manages water for SW Florida
• covers 10,000 square miles
• serves > 5 million people.

• 3 cities and 3 counties in the Tampa Bay region.
• provides 186 million gallons drinking water / day

Source: SWFWMD, 2011
http://www.swfwmd.state.fl.us/about/mission/
Strawberries: Dover / Plant City

Florida is the main producer of winter strawberries in the USA.

Approximately 7000 acres are harvested in SW Florida.

Protecting crops from frost-freeze events is important.
Crop protection during frost-frost events

- Passive
 - Site selection
 - Cover

- Active
 - Heaters
 - Wind
 - Water

Table 4. Estimated approximate annual per hectare/hour operating costs (including amortization of investment, but with 0% interest and before taxes) for selected cold temperature (frost) protection systems used 120 hours per year.

<table>
<thead>
<tr>
<th>Method</th>
<th>Estimated costs/ha/hr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Return Stack Oil Heaters (100/ha)*</td>
<td>$ 93.08</td>
</tr>
<tr>
<td>Standard Propane Heaters (154/ha)*</td>
<td>103.98</td>
</tr>
<tr>
<td>Wind Machine (130 BHP propane)</td>
<td>33.36</td>
</tr>
<tr>
<td>Overcrop Sprinkling</td>
<td>4.10</td>
</tr>
<tr>
<td>Under Canopy Sprinkling</td>
<td>4.25</td>
</tr>
<tr>
<td>Frost-free site</td>
<td>0.00</td>
</tr>
</tbody>
</table>

* equal total heat output
Frost-freeze and damage

<table>
<thead>
<tr>
<th>Floral/Fruit Stage Strawberry</th>
<th>Temperature at which 90% Damage Occurs (F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tight bud</td>
<td>22°F or -5.5°C</td>
</tr>
<tr>
<td>Tight with white petals</td>
<td>28°F or -2.2°C</td>
</tr>
<tr>
<td>Full bloom</td>
<td>32°F or -1.1°C</td>
</tr>
<tr>
<td>Immature fruit</td>
<td>28°F or -2.2°C</td>
</tr>
</tbody>
</table>

Source: OMFRA, 2009
Known effects of water abstraction

Abstraction of water

Rapid reduction in water levels
(940 million gallons water/day vs 37 MGD)

Result

• Dry wells

• Sinkhole development

Source: Bengstonn, 1989
Damage caused during the 2010 frost-freeze

<table>
<thead>
<tr>
<th>Plant City Road Repairs</th>
<th>Trapnell Elementary School</th>
<th>Plant City Water Tower</th>
<th>Hillsborough County</th>
<th>Sinkhole</th>
</tr>
</thead>
<tbody>
<tr>
<td>$1,600,000</td>
<td>$900,000</td>
<td>$250,000</td>
<td>$4,900,000</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1</td>
<td>139</td>
<td></td>
</tr>
</tbody>
</table>

Picture illustrating how a 30 yard wide 40-50 foot deep sinkhole destroyed property in Plant City, FL. (Source: Picture by Jay Nolan 2010)

Damage caused by a sinkhole on Highway 27 near Interstate 4 connecting Tampa and Orlando, which resulted in the closure of three of four lanes on January 13, 2010. (Source: Picture by WMG-TV Jacksonville, 2010)
Sinkholes in Florida

Subsidence Incidents Reported to the Florida Geologic Survey

Sinkholes without date information in the FGS database were not counted.

2010 Sinkhole Data Through February
Sinkhole is 30 ft x 12 ft
Water levels dropped > 20 ft for 3 days
When temperatures dropped below-normal with freezing temperatures

Damage during 2010 frost-freeze

Repairing Florida sinkholes are EXPENSIVE

By GEORGE H. NEWMAN | The Tampa Tribune Dec 31, 2010
SWFWMD reports costs can range from $1,000-$10,000 per incident

Tampa Bay Waters costs are similar to repair dry wells

<table>
<thead>
<tr>
<th>Process</th>
<th>Detailed Description</th>
<th>Average Cost ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Investigate Claim</td>
<td>Initial investigation to determine severity of the problem.</td>
<td>$1,000</td>
</tr>
<tr>
<td>Option 1: Repair well OR drill new well using complainant vendor</td>
<td>Repair or drill new well using complainant vendor</td>
<td>Repair Well-$5,000 New Well- $14,000</td>
</tr>
<tr>
<td>Option 2: Repair Well</td>
<td>Water company repairs or drills new well</td>
<td>$9,000</td>
</tr>
<tr>
<td>Well Completion</td>
<td>Final water quality tests to ensure water quality is to federal drinking water standards. Performed by independent consultant</td>
<td>$4,000</td>
</tr>
</tbody>
</table>
Alternative Frost-Freeze Protection

Freeze Cloth

- Estimated Cost for Cloth is $2,000-$2,400 per acre
- Average Labor Cost to apply $300 per acre
- In the Dover/Plant City Area Farmers pay 25% the rest is covered by SWFWMD Facilitating Agricultural Resource Management Systems (FARMS) program
Objectives

1. Analyze how frost-freeze events affected West Central Florida over the past 25 years.

2. Understand the relationship between sinkhole/drywell complaints to a variety of factors (minimum temperatures, ground water level and proximity to strawberry farms).

3. Examine the use of alternative methods through an economic impact analysis.
Data Sources

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Publisher/Source</th>
<th>Published</th>
<th>Data Type</th>
<th>Shape</th>
<th>Measure</th>
<th>Time Component</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOAA Temperature Data</td>
<td>National Oceanic and Atmospheric Administration</td>
<td>2010</td>
<td>Vector</td>
<td>Point</td>
<td>F°-Daily Minimum Temperature</td>
<td>Yes</td>
</tr>
<tr>
<td>Sinkhole Location</td>
<td>Florida Geologic Survey</td>
<td>2010</td>
<td>Vector</td>
<td>Point</td>
<td>N/A</td>
<td>Yes/No</td>
</tr>
<tr>
<td>Strawberry Farms</td>
<td>SWFWMD</td>
<td>2010</td>
<td>Vector</td>
<td>Polygon</td>
<td>N/A</td>
<td>No</td>
</tr>
<tr>
<td>Water Use Permits</td>
<td>Southwest Florida Water Management District</td>
<td>2010</td>
<td>Vector</td>
<td>Point</td>
<td>Maximum Daily Permitted Flow Gallons/Day</td>
<td>No</td>
</tr>
<tr>
<td>Floridan Aquifer Monitor Sites</td>
<td>Tampa Bay Water</td>
<td>2010</td>
<td>Vector</td>
<td>Point</td>
<td>Daily Average</td>
<td>Yes/No</td>
</tr>
<tr>
<td>Well Complaints</td>
<td>Tampa Bay Water</td>
<td>2010</td>
<td>CSV</td>
<td>Table</td>
<td>Daily Average</td>
<td>Yes/No</td>
</tr>
<tr>
<td>SWFWMD 2010 Aerial Photos</td>
<td>Tampa Bay Water</td>
<td>2010</td>
<td>Vector</td>
<td>Point</td>
<td>N/A</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Southwest Florida Water Management District</td>
<td>2010</td>
<td>Raster</td>
<td>N/A</td>
<td>N/A</td>
<td>No</td>
</tr>
</tbody>
</table>
What Defines a frost freeze event?

Frost freeze event will be defined when temperature < 32 °F (0 °C)

<table>
<thead>
<tr>
<th>Floral/Fruit Stage</th>
<th>Temperature at which Damage Occurs (°F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tight bud</td>
<td>22°F or -5.5°C*</td>
</tr>
<tr>
<td>Tight with white petals</td>
<td>28°F or -2.2°C*</td>
</tr>
<tr>
<td>or immature fruit</td>
<td></td>
</tr>
<tr>
<td>Full bloom</td>
<td>31°F or -0.5°C*</td>
</tr>
<tr>
<td>Strawberry</td>
<td>32°F or 0°C</td>
</tr>
</tbody>
</table>
Analysis

- Spatial and temporal analysis
 - Occurrence of sinkholes and dry well complaints over 25 years
 - Occurrence of sinkholes and dry well complaints during two frost-freeze events (1985 and 2010) and a non frost-freeze year (2007)

- Hot Spot Analysis
- Exploratory Regression Analysis
25 year span

1985

2010

2007

2010
Sinkholes and Dry Well Complaints
1985 - 2010
Sinkholes and Dry Well Complaints
Relationship to Water Level Change
1985 - 2010

Number of Complaints

Change in Water Level

\[y = 0.0822x^2 - 0.5798x + 4.8983 \]

\[R^2 = 0.585 \]
Drop in Water Levels during a Frost-Freeze Event, 1985
Statistical Correlation between Minimum Temperature and Water Level Change for Sinkholes & Dry Well Complaints during a frost-freeze event, 1985

No Correlation

Change in Water Level
\[(n=5, r=0.276, P <0.05)\]
Change in Water Level
\((n=5, r=0.276, P < 0.05) \)

Minimum Temperature
\((n=45, r=0.110, P < 0.05) \).
Drop in water levels during a frost-freeze event, 2010
Statistical Correlation between Minimum Temperature and Water Level Change for Sinkholes & Dry Well Complaints

Water levels during a frost-freeze event, 2010

Correlation between change in water level

Change in Water Level
- **Sinkhole**: \(n=15, r=0.791, P > 0.05 \).
- **Dry Well Complaints**: \(n=22, r=0.783, P > 0.05 \).

\[
y = 0.9032x - 3.6265 \\
R^2 = 0.6279
\]

\[
y = 0.4554x - 1.49 \\
R^2 = 0.6123
\]
Statistical Correlation between Minimum Temperature and Water Level Change for Sinkholes & Dry Well Complaints

Water levels during a frost-freeze event, 2010

Correlation between Minimum Temperature

Minimum Temperature
Sinkhole: \(n=15, r=0.632, P > 0.05 \).
Dry Well Complaints: \(n=22, r=0.625, P > 0.05 \).
Statistical Correlation between Minimum Temperature and Water Level Change for Sinkholes & Dry Well Complaints

Water levels during a frost-freeze event, 2010

Correlation between minimum temperature & change in water level

Minimum Temperature & Water Level Change

Sinkhole: (n=15, r=0.721, P >0.05).
Dry Well Complaints: (n=22, r=0.823, P >0.05).

\[y = -0.6255x + 54.456 \]

\[R^2 = 0.5209 \]
Spatial Analysis of the 1985 and 2010 Frost Freeze Events
Clustering of Sinkholes and Dry Well Complaints 1985, 2007, and 2010?

Average Nearest Neighbor

<table>
<thead>
<tr>
<th>Year</th>
<th>Sinkhole</th>
<th>Observed Mean Distance</th>
<th>Expected Mean Distance</th>
<th>Nearest Neighbor Index</th>
<th>Z-Score</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1985</td>
<td>30</td>
<td>253.875442</td>
<td>2362.907813</td>
<td>0.107442</td>
<td>-9.352506</td>
<td>0.000000</td>
</tr>
<tr>
<td>2010</td>
<td>131</td>
<td>391.749768</td>
<td>1126.472101</td>
<td>0.0347767</td>
<td>-14.335758</td>
<td>0.000000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year</th>
<th>Dry Well Complaints</th>
<th>Observed Mean Distance</th>
<th>Expected Mean Distance</th>
<th>Nearest Neighbor Index</th>
<th>Z-Score</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>2007</td>
<td>5</td>
<td>4730.326943</td>
<td>5787.918451</td>
<td>0.817276</td>
<td>-0.781648</td>
<td>0.433550</td>
</tr>
<tr>
<td>2010</td>
<td>812</td>
<td>205.42</td>
<td>1490.73</td>
<td>0.137798</td>
<td>-47</td>
<td>0.000000</td>
</tr>
</tbody>
</table>
Have sinkholes and dry wells occurred in the same areas in both 1985 and 2010?
Dry Well Complaint locations in 2010
Spatial Regression Analysis

Understanding the relationship between sinkhole/drywell complaints to a variety of factors (minimum temperatures, ground water level and proximity to strawberry farms).
Sinkhole and Dry Well Complaints Distance to Strawberry Fields

% Of Incidents

Distance in Miles

- 1985 Sinkholes
- 2007 Dry Well Complaints
- 2010 Sinkholes
- 2010 Dry Well Complaints
Locations of Sinkholes, Dry Well Complaints and Strawberry Fields in 2010
Water Use Permits Greater Than 1 MGPD in 2010
Exploratory Regression
Exploratory Regression Results

<table>
<thead>
<tr>
<th>Measuring</th>
<th>Passing Models</th>
<th>Table Abbreviations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min Adjusted R-Squared > 0.50</td>
<td>R^2</td>
<td>Adjusted R-Squared</td>
</tr>
<tr>
<td>Max Coefficient p-value < 0.05</td>
<td>AICc</td>
<td>Akaike’s Information Criterion</td>
</tr>
<tr>
<td>Max VIF Value < 7.50</td>
<td>JB</td>
<td>Jarque-Bera p-value</td>
</tr>
<tr>
<td>Min Jarque-Bera p-value > 0.10</td>
<td>BP</td>
<td>Koenker (BP) Statistic p-value</td>
</tr>
<tr>
<td>Min Moran’s I p-value > 0.10</td>
<td>VIF</td>
<td>Max Variance Inflation Factor</td>
</tr>
<tr>
<td></td>
<td>MI</td>
<td>Moran’s I p-value</td>
</tr>
<tr>
<td></td>
<td>Model Variable sign and significance</td>
<td></td>
</tr>
<tr>
<td></td>
<td>* = 0.10, ** = 0.05, *** = 0.01</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>R^2</th>
<th>AICc</th>
<th>JB</th>
<th>BP</th>
<th>VIF</th>
<th>MI</th>
<th>Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sinkhole</td>
<td>0.718955</td>
<td>115.0596</td>
<td>0.695553</td>
<td>0.010191</td>
<td>1.849512</td>
<td>0.157826</td>
<td>-SHAVEDISTSF** +SUM_PERM_CROP **</td>
</tr>
<tr>
<td>Dry Well Complaint</td>
<td>0.762637</td>
<td>161.155</td>
<td>0.847513</td>
<td>0.069014</td>
<td>1.53641</td>
<td>0.873654</td>
<td>-DWCAVEDISTSF** +SUM_PERM_CROP **</td>
</tr>
</tbody>
</table>

Indicates Model Significance * = 0.10, ** = 0.05, *** = 0.01

NOTE: Adjusted R^2 indicates model performance with higher values indicative of better performance, AICc (Corrected Akaike’s Information Criterion) measures model fit with lower values indicative of better fit, the Koenker BP Statistic measures stationarity with significant p-value indicating non-stationarity, the Jarque-Bera Statistic assess the distribution of the model residuals with significant p-value indicating non-normal distribution, and Moran’s Index measures spatial autocorrelation with significant p-value indicating non-random spatial distribution.
Time Series Animation of the Frost Freeze Event
January 1, 2010 to January 21, 2010
Comparison of frost-freeze events.
Cost of pumping vs cost of using alternative control for 2010

- Cost of investigating and repairing dry wells
 - 2007- total cost was $12,859 (average $2571 per complaint)
 - 2010- total cost was $472,951 (average $2866 per complaint)

- Estimated cost of using the frost freeze cloth
 - Total Cost=$16.5 million ($39,000 per field)
 - FARMS subsides=Farmers pay $4.1 million ($9,750 per field)
 - Farmers pay 25% SWFWMD pays 75%
Conclusion

- **Summary of Findings**
 - A statistically significant correlation between minimum temperatures and change in water level (MinTa < 41°F and WL Change > 20 ft, number of sinkholes increase (N > 10))
 - Sinkhole occurrence are spatially clustered
 - Dry well complaints are spatially clustered
 - Spatial regression analysis found that distance to strawberry fields and water use permits (total volume) influence development of sinkholes and dry well complaints.

- **Comparison to previous studies**
 - 25 year span, plus 3 individual years
 - Bengtsson (1989) study only analyzed single event in 1985
Conclusion

Future/Suggestions

- SWFWMDs Dover/Plant City Freeze Management Plan-2010
- Suggestions and Recommendations from this study
Acknowledgements

Justine Blanford
Capstone Advisor
The Pennsylvania State University

Bryan Zumwalt
GIS Manager
Tampa Bay Water

Robert Peterson
Sr. Professional Geologist
SWFWMD
Questions

Mark D. Aurit GISP
maurit@tampabaywater.org